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Abstract. Including contributions of scale-dependent vacuum expectation values, we derive new analytic
formulas and obtain substantially different numerical predictions for the running masses of quarks and
charged leptons at higher scales in the SM, 2HDM and MSSM. These formulas exhibit significantly different
behaviours with respect to their dependence on gauge and Yukawa couplings from those derived earlier. At
one-loop level, the masses of the first two generations are found to be independent of the Yukawa couplings
of the third generation in all three effective theories in the small mixing limit. Analytic formulas are also
obtained for the running of tanβ(µ) in 2HDM and MSSM. Other numerical analyses include a study of
the third generation masses at high scales as functions of the low-energy values of tan β and the SUSY
scale MS = MZ − 104 GeV.

1 Introduction

One of the most attractive features of current investi-
gations in gauge theories is the remarkable unification
of the gauge couplings of the standard model (SM) at
the SUSY GUT scale, MU = 2 × 1016 GeV, when ex-
trapolated through the minimal supersymmetric standard
model (MSSM) [1]. Although the non-supersymmetric
standard model (SM), or the two-Higgs doublet model
(2HDM) do not answer the question of gauge hierarchy,
unification of the gauge couplings is also possible at the
corresponding GUT scales when they are embedded in
non-SUSY theories like SO(10), and the symmetry break-
ing takes place in two steps with left–right models as inter-
mediate gauge symmetries [2]. Grand unification of gauge
couplings of the SM in single-step breakings of GUTs has
also been observed when the grand desert contains ad-
ditional scalar degrees of freedom [3], and the minimal
example is a ξ(3, 0, 8) of SM contained in 75 ⊂ SU(5) or
210 ⊂ SO(10) with mass Mξ = 1011–1013 GeV [4]. Unifi-
cation of gauge couplings in non-SUSY SO(10) has been
demonstrated with relatively large GUT threshold effects
[5]. Yukawa coupling unification at the intermediate scale
has also been observed in non-SUSY SO(10) with 2HDM
as the weak scale effective gauge theory [6]. Apart from
the unity of forces at high scales, SM, 2HDM and MSSM
have tremendous current importance as effective theories,
as they emerge from a large class of fundamental theories.

Recent experimental evidences in favour of neutrino
masses and mixings have triggered an outburst of mod-

a e-mail: crdas@email.com
b e-mail: mparida@dte.vsnl.net.in

els, many of which require running masses and mixings
of quarks and charged leptons at high scales as inputs
for obtaining predictions in the neutrino sector [7,8]. The
running masses are not only essential at the weak scale,
but they are also required at the intermediate and the
GUT scales in order to testify theories based upon quark–
lepton unification with different Yukawa textures and for
providing a unified explanation of all fermion masses [9–
13]. Quite recently, the extrapolation of running masses
and couplings to high scales have been emphasised as an
essential requirement for testing more fundamental theo-
ries [13].

In a recent paper one of us (M.K.P) and Purkayastha
[14] have obtained new analytic formulas and numerical
estimations for the fermion masses at higher scales in
MSSM, including contributions of scale-dependent vac-
uum expectation values (VEVs), where the SUSY scale
(MS) was assumed to be close to the weak scale (MS ≈
MZ). In this paper, we extend such investigations to SM,
2HDM and MSSM with the SUSY scale MS ≥ O (TeV).

It is also possible that in a different renormalisation
scheme, similar to that formulated by Sirlin et al. [15],
the VEVs themselves do not run when they are expressed
in terms of physical parameters defined on the mass shell.
This makes it possible to avoid separate running of the
VEVs and Yukawa couplings, but to have just the fermion
masses directly as running quantities. While it would be
quite interesting to examine the consequences of such a
scheme, the purpose of the present and recent works [14]
is to address the outcome of the most frequently exploited
renormalisation scheme where the Yukawa couplings and
the VEVs run separately [16–24].
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This paper is organised in the following manner. In
Sect. 2 we cite examples where running VEVs have been
exploited by a number of authors and state relevant renor-
malisation group equations (RGEs). In Sect. 3 we derive
analytic formulas. In Sect. 4 we show how the formulas
derived earlier for MSSM are modified when MS � MZ .
Section 5 gives a comparison of our formulas with other
ones derived earlier in all the three gauge theories. Nu-
merical predictions at higher scales are reported in Sect. 6.
A summary and conclusions are stated in Sect. 7.

2 RGEs for couplings
and vacuum expectation values

After the pioneering discovery of b–τ unification at the
non-SUSY SU(5) GUT scale [25], a number of theoretical
investigations have been made to examine the behaviour
of Yukawa couplings and running masses at higher scales.
Following the frequently exploited renormalisation scheme
[16–24] where the Yukawa couplings and the VEVs run
separately, the running Dirac mass of the fermion “a” is
defined by

Ma(µ) = Ya(µ)va(µ). (2.1)

Then the running of Ma(µ) is governed both by the RGE
of Ya(µ) and va(µ). To cite some examples: Grimus [22]
has derived approximate analytic formulas in SM for all
values of µ extending up to the non-SUSY SU(5) GUT
scale utilising the corresponding scale-dependent VEV. In
the discovery of fixed point Yukawa couplings, Pendleton
and Ross [23] have exploited the RGE of the SM Higgs
VEV to derive the RGEs of the running masses from
µ = MW − MGUT. Anomalous dimensions occurring in
the RGEs of respective VEVs have been explicitly derived
and stated up to two loops by Arason et al. [16,17] and
by Castano, Pirad and Ramond [18] for SM and MSSM.
While investigating renormalisation of the neutrino mass
operator, Babu, Leung and Pantaleone [24] have derived
the RGE for tanβ(µ) in a class of 2HDM as a consequence
of running VEVs in the model. More recently, Balzeleit et
al. [20] have utilised the RGE of the VEV in SM to de-
termine running masses for µ = MW − 1010 GeV. Cvetic,
Hwang and Kim [21] have derived RGEs for the VEVs in
2HDM and utilised them to obtain running quark–lepton
masses at high scales and also investigate the suppression
of a flavour changing neutral current in the model. Most
recently the RGEs of running VEVs have been utilised
by one of us (M.K.P.) and Purkayastha [14] who have ob-
tained new analytic formulas and numerical estimations
of the fermion masses at higher scales taking the SUSY
scale MS ≈ MZ .

We consider only the class of 2HDM where Φu gives
masses to up quarks and Φd to down quarks and charged
leptons. For the sake of simplicity we ignore the neutrino
mass in the present paper; this will be addressed sepa-
rately. Our definitions and conventions for the Yukawa
couplings and masses are governed by the following
Yukawa Lagrangian (superpotential) in SM or 2HDM
(MSSM) and the corresponding VEVs of Higgs scalars:

SM

LY = QLYU Φ̃UR +QLYDΦDR + lLYEΦER + h.c.,

〈Φ0(µ)〉 = v(µ). (2.2)

2HDM, MSSM

LY = QLYUΦuUR +QLYDΦdDR

+lLYEΦdER + h.c.,
〈Φ0

u(µ)〉 = vu(µ) = v(µ) sinβ(µ),
〈Φ0

d(µ)〉 = vd(µ) = v(µ) cosβ(µ),
v2(µ) = v2

u(µ) + v2
d(µ),

tanβ(µ) = vu(µ)/vd(µ). (2.3)

The relevant RGEs for the Yukawa matrices at one-loop
level for the three effective theories are expressed as [16–
19,26–28]

16π2 dYU
dt

=
[
Tr
(
3YUY

†
U + 3aYDY

†
D + aYEY

†
E

)

+
3
2

(
bYUY

†
U + cYDY

†
D

)
−
∑
i

C
(u)
i g2

i

]
YU ,

16π2 dYD
dt

=
[
Tr
(
3aYUY

†
U + 3YDY

†
D + YEY

†
E

)

+
3
2

(
bYDY

†
D + cYUY

†
U

)
−
∑
i

C
(d)
i g2

i

]
YD,

16π2 dYE
dt

=
[
Tr
(
3aYUY

†
U + 3YDY

†
D + YEY

†
E

)

+
3
2
bYEY

†
E −

∑
i

C
(e)
i g2

i

]
YE . (2.4)

The RGEs for the VEV in the SM have been derived up
to two loops from wave function renormalisation of the
scalar field [16,17,19,20,22,23] and the one-loop equation
is

16π2 dv
dt

=

[∑
i

Cv
i g

2
i − Tr

(
3YUY

†
U + 3YDY

†
D + YEY

†
E

)]
v,

(2.5)
where t = lnµ.

The RGEs for va(a = u, d) in the 2HDM up to one
loop and in MSSM up to two loops have been derived in
[16–19,21]. The one-loop equations in both theories are

16π2 dvu
dt

=

[∑
i

Cv
i g

2
i − Tr

(
3YUY

†
U

)]
vu,

16π2 dvd
dt

=

[∑
i

Cv
i g

2
i − Tr

(
3YDY

†
D + YEY

†
E

)]
vd; (2.6)

whereas charged lepton Yukawa contributions were
ignored in the R.H.S. of (2.6) for the 2HDM in [21], we
have included them. The gauge couplings in the three
models obey the well-known one-loop RGEs:

16π2 dgi
dt

= big
3
i . (2.7)
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Two-loop contributions have been derived by a number
of authors [16–19,22–28]. The coefficients appearing in
the R.H.S. of (2.4)–(2.7) are defined in the three differ-
ent cases:
SM, 2HDM

Cu
i =

(
17
20
,
9
4
, 8
)
,

Cd
i =

(
1
4
,
9
4
, 8
)
,

Ce
i =

(
9
4
,
9
4
, 0
)
,

Cv
i =

(
9
20
,
9
4
, 0
)
. (2.8)

MSSM

Cu
i =

(
13
15
, 3,

16
3

)
,

Cd
i =

(
7
15
, 3,

16
3

)
,

Ce
i =

(
9
5
, 3, 0

)
,

Cv
i =

(
3
20
,
3
4
, 0
)
. (2.9)

SM

bi =
(

41
10
,−19

6
,−7

)
,

(a, b, c) = (1, 1,−1) . (2.10)

2HDM

bi =
(

21
5
,−3,−7

)
,

(a, b, c) =
(
0, 1,

1
3

)
. (2.11)

MSSM

bi =
(

33
5
, 1,−3

)
,

(a, b, c) =
(
0, 2,

2
3

)
. (2.12)

For the sake of simplicity we have neglected the Yukawa
interactions of the neutrinos. Assuming that the right-
handed neutrinos are massive (MN > 1013 GeV) our for-
mulas are valid below MN to a very good approximation
even if such interactions are included.

3 RGEs and analytic formulas
for running masses

Using the definition (2.1) and (2.4)–(2.12), we obtain the
RGEs for the mass matrices in the broken phases of SM,
2HDM, or MSSM in the following form:

16π2 dMU

dt
=

(
−
∑
i

Cig
2
i + ãYUY

†
U + b̃YDY

†
D

)
MU ,

16π2 dMD

dt
=

(
−
∑
i

C ′
ig

2
i + b̃YUY

†
U + ãYDY

†
D

)
MD,

16π2 dME

dt
=

(
−
∑
i

C ′′
i g

2
i + c̃YEY

†
E

)
ME , (3.1)

where the coefficients in the R.H.S. are defined for the
three cases:
SM, 2HDM

Ci =
(

2
5
, 0, 8

)
,

C ′
i =

(
−1

5
, 0, 8

)
,

C ′′
i =

(
9
5
, 0, 0

)
. (3.2)

MSSM

Ci =
(

43
60
,
9
4
,
16
3

)
,

C ′
i =

(
19
60
,
9
4
,
16
3

)
,

C ′′
i =

(
33
20
,
9
4
, 0
)
,(

ã, b̃, c̃
)

= (3, 1, 3) . (3.3)

SM (
ã, b̃, c̃

)
=
(

3
2
,−3

2
,
3
2

)
. (3.4)

2HDM (
ã, b̃, c̃

)
=
(

3
2
,
1
2
,
3
2

)
. (3.5)

Defining the diagonal mass matrices M̂F , the diagonal
Yukawa matrices (ŶF ) and the CKM matrix (V ) through
biunitary transformations LF and RF on the left(right)-
handed fermion FL(FR) with F = U,D,E,

M̂F = L†
FMFRF ,

ŶF = L†
FYFRF ,

M̂2
F = L†

FMFM
†
FLF ,

Ŷ 2
F = L†

FYFY
†
FLF ,

V = L†
ULD, (3.6)

and following the procedures outlined in [14,29], we obtain

dM̂2
U

dt
=
[
M̂2

U , L
†
U L̇U

]
+

1
16π2

[
−2
∑
i

Cig
2
i M̂

2
U

+ 2ãŶ 2
UM̂

2
U + b̃

(
V Ŷ 2

DV
†M̂2

U + M̂2
UV Ŷ

2
DV

†
)]
,
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dM̂2
D

dt
=
[
M̂2

D, L
†
DL̇D

]
+

1
16π2

[
−2
∑
i

C ′
ig

2
i M̂

2
D

+ 2ãŶ 2
DM̂

2
D + b̃

(
V †Ŷ 2

UV M̂
2
D + M̂2

DV
†Ŷ 2

UV
)]
,

dM̂2
E

dt
=
[
M̂2

E , L
†
EL̇E

]

+
1

16π2

[
−2
∑
i

C ′′
i g

2
i M̂

2
E + 2c̃Ŷ 2

EM̂
2
E

]
, (3.7)

where L̇F = dLF /dt.
We point out that in the corresponding RGEs for

Yukawa couplings given by (2.13) in [29], the terms −2
∑

i

Cu
i g

2
i Ŷ

2
U/
(
16π2

)
, −2

∑
i C

d
i g

2
i Ŷ

2
D/
(
16π2

)
and −2

∑
i C

e
i g

2
i

Ŷ 2
E/
(
16π2

)
are missing from the R.H.S.

The diagonal elements of L†
F L̇F (F = U,D,E) are

made to vanish in the usual manner by diagonal phase
multiplication. The non-diagonal elements of both sides of
(3.7) give the same RGEs for the CKM matrix elements
as before, which on integration yields [29,30]

|Vαβ(µ)| =




|Vαβ(mt)| exp
( 3

2c (It(µ) + Ib(µ))
)
,

αβ = ub, cb, tb, ts,

|Vαβ(mt)|,
otherwise.

(3.8)

Taking diagonal elements of both sides of (3.7) and us-
ing dominance of the Yukawa couplings of the third gener-
ation over the first two, except the charm quark, we obtain
RGEs for the mass eigenvalues of quarks and leptons:

16π2 dmu

dt
=

[
−
∑
i

Cig
2
i + b̃y2

b |Vub|2
]
mu,

16π2 dmc

dt
=

[
−
∑
i

Cig
2
i + ãy2

c + b̃y2
b |Vcb|2

]
mc,

16π2 dmt

dt
=

[
−
∑
i

Cig
2
i + ãy2

t + b̃y2
b |Vtb|2

]
mt,

16π2 dmj

dt
=

[
−
∑
i

C ′
ig

2
i + b̃y2

t |Vtj |2
]
mj , j = d, s,

16π2 dmb

dt
=

[
−
∑
i

C ′
ig

2
i + ãy2

b + b̃y2
t |Vtb|2

]
mb,

16π2 dmj

dt
=

[
−
∑
i

C ′′
i g

2
i

]
mj , j = e, µ,

16π2 dmτ

dt
=

[
−
∑
i

C ′′
i g

2
i + c̃y2

τ

]
mτ . (3.9)

Integrating (3.9) and using the corresponding low-energy
values, the new analytic formulas are obtained in the small
mixing limit:

mu(µ) = mu(1GeV)η−1
u B−1

u ,

mc(µ) = mc(mc)η−1
c B−1

u exp(ãIc),

mt(µ) = mt(mt)B−1
u exp(ãIt + b̃Ib),

mi(µ) = mi(1GeV)η−1
i B−1

d , i = d, s,

mb(µ) = mb(mb)η−1
b B−1

d exp(ãIb + b̃It),

mi(µ) = mi(1GeV)η−1
i B−1

e , i = e, µ,

mτ (µ) = mτ (mτ )η−1
τ B−1

e exp(c̃Iτ ), (3.10)

where

Bu =
∏(

αi(µ)
αi(mt)

)Ci/(2bi)

,

Bd =
∏(

αi(µ)
αi(mt)

)C′
i/(2bi)

,

Be =
∏(

αi(µ)
αi(mt)

)C′′
i /(2bi)

. (3.11)

We have

If (µ) =
1

16π2

∫ lnµ

lnmt

y2
f (t

′)dt′. (3.12)

The ratio ηf (f = u, d, c, s, b, e, µ, τ) appearing in (3.10) is
the QCD–QED rescaling factor for the fermion mass mf .
Integration of (2.5) and (2.6) gives analytic formulas for
the running VEVs in the SM, 2HDM, and MSSM:

v(µ) = v(mt)
∏(

αi(µ)
αi(mt)

)Cv
i /(2bi)

× exp(−3It − 3Ib − Iτ ),

vu(µ) = vu(mt)
∏(

αi(µ)
αi(mt)

)Cv
i /(2bi)

exp(−3It),

vd(µ) = vd(mt)
∏(

αi(µ)
αi(mt)

)Cv
i /(2bi)

exp(−3Ib − Iτ ),

(3.13)

where Cv
i has been defined through (2.8) and (2.9). As

derived in [14] for the MSSM, the formula for running
tanβ(µ) has the same form in the 2HDM at one-loop level:

tanβ(µ) = tanβ(mt) exp (−3It(µ) + 3Ib(µ)
+Iτ (µ)) , (3.14)

which is obtained by integrating (2.6). The QCD–QED
rescaling factors occurring in (3.10) have been determined
through the running of SU(3)C ×U(1)em gauge couplings
[26,29,31]

ηu = 2.38+0.52
−0.30,

ηs = ηd = 2.36+0.53
−0.29,

ηc = 2.09+0.27
−0.19,

ηb = 1.53+0.07
−0.06,

ηe ≈ ηµ ≈ ητ = 1.015. (3.15)
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4 Formulas in MSSM for MS > MZ

In the MSSM the natural SUSY scale (MS) could be very
different from the weak scale withMS ≈ O (TeV), whereas
MS � 1TeV has a gauge hierarchy problem. As our new
contribution in MSSM in this paper, compared to [14],
we present new analytic formulas for all charged fermion
masses for any SUSY scale MS > MZ by running them
frommt−MS as in SM and then fromMS−µ as in MSSM.
We have

mu(µ) = mu(1GeV)η−1
u Gu(µ), (4.1)

mc(µ) = mc(mc)η−1
c Gu(µ)

× exp
(

3
2
Ic(MS) + 3Ĩc(µ)

)
, (4.2)

mt(µ) = mt(mt)Gu(µ) exp
(

3
2
It(MS) − 3

2
Ib(MS)

+3Ĩt(µ) + Ĩb(µ)
)
, (4.3)

mi(µ) = mi(1GeV)η−1
i Gd(µ), i = d, s, (4.4)

mb(µ) = mb(mb)η−1
b Gd(µ) exp

(
3
2
Ib(MS)

−3
2
It(MS) + 3Ĩb(µ) + Ĩt(µ)

)
, (4.5)

mi(µ) = mi(1GeV)η−1
i Ge(µ), i = e, µ, (4.6)

mτ (µ) = mτ (mτ )η−1
τ Ge(µ)

× exp
(

3
2
Iτ (MS) + 3Ĩτ (µ)

)
, (4.7)

where

Gu(µ) =
(
α1(MS)
α1(mt)

)−2
41
(
α3(MS)
α3(mt)

) 4
7
(
α1(µ)
α1(MS)

)−43
792

×
(
α2(µ)
α2(MS)

)−9
8
(
α3(µ)
α3(MS)

) 8
9

,

Gd(µ) =
(
α1(MS)
α1(mt)

) 1
41
(
α3(MS)
α3(mt)

) 4
7
(
α1(µ)
α1(MS)

)−19
792

×
(
α2(µ)
α2(MS)

)−9
8
(
α3(µ)
α3(MS)

) 8
9

,

Ge(µ) =
(
α1(MS)
α1(mt)

)−9
41
(
α1(µ)
α1(MS)

)−1
8
(
α2(µ)
α2(MS)

)−9
8

.

(4.8)

Furthermore,

Ĩf (µ) =
1

16π2

∫ lnµ

lnMS

y2
f (t

′)dt′, (4.9)

and If (MS) is defined through (3.12) with µ = MS. Run-
ning of the elements of the CKM matrix in the MSSM
leads to modification by the following formulas:

|Vαβ(µ)| =




|Vαβ(mt)| exp
( 3

2 (It(MS) + Ib(MS))

−
(
Ĩt(µ) + Ĩb(µ)

))
,

αβ = ub, cb, tb, ts,

|Vαβ(mt)|,
otherwise.

(4.10)

The one-loop formulas for vu(µ), vd(µ) and tanβ(µ)
are also modified:

vu(µ) = vu(MS)
∏

(αi(µ)αi(mt))
Cv

i /(2bi)

× exp(−3Ĩt),

vd(µ) = vd(MS)
∏

(αi(µ)αi(mt))
Cv

i /(2bi)

× exp(−3Ĩb − Ĩτ ),
tanβ(µ) = tanβ(MS)

× exp
(
−3Ĩt(µ) + 3Ĩb(µ) + Ĩτ (µ)

)
. (4.11)

The analytic formulas (4.1)–(4.11) hold good for any value
of mt < MS < µ. It may be noted that in the limit of
MS → mt, If (MS) → 0, Ĩf (µ) → If (µ) and the formulas
(4.1)–(4.11) reduce to those obtained in [14].

5 Comparison with other formulas

In this section, by comparing with formulas obtained by
other authors [20,22,23,25,29,31], we show that our for-
mulas are new and are clearly different. Our numerical
computations will be compared with other numerical re-
sults in Sect. 6. The basic reasons for the difference of
other formulas from ours are that in earlier derivations
either the scale dependence of the VEVs has been ig-
nored, or even if it has been included, certain approxi-
mations like ignoring all other contributions except those
due to the SU(3)C gauge and top quark Yukawa cou-
plings have been made. Also, while some other deriva-
tions have used a top-down approach containing unknown
high-scale masses in the formulas, our formulas contain
running masses at low energies determined from experi-
mental data. Our formulas for the SM, 2HDM and MSSM
are given in (3.10)–(3.14), (4.1)–(4.11) with the definition
of coefficients through (2.8)–(3.5), and they are further ex-
plicitly elucidated in Tables 1–3 for the sake of comparison
with other formulas.

In the earliest studies of the behaviour of running
masses of fermions [22,25] at higher scales, the effect of
the scale dependent VEV in the SM has been included to
derive analytic formulas for the masses of quarks and lep-
tons of three generations. Using the variable t′ = lnM/µ
and neglecting all one-loop contribution of Yukawa cou-
plings in the RGEs, the following approximate formulas
have been derived in the top-down approach, at any lower
scale µ < M :

v(t′) = v(0)
(
α1(t′)
α1(0)

) 9
164
(
α2(t′)
α2(0)

)−27
76

,
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Table 1. Comparison of analytic formulas of this analysis with those of [31], where scale
dependence of the VEV has been ignored in the non-SUSY standard model. Here ηi (i =
e, µ, τ, d, s, b, u, c) are the QCD–QED rescaling factors given in (3.15)

Reference [31] This analysis

mu(µ) = mu(1GeV)η−1
u A−1

u exp(3It + 3Ib + Iτ ) mu(µ) = mu(1GeV)η−1
u B−1

u

mc(µ) = mc(mc)η−1
c A−1

u exp(3It + 3Ib + Iτ ) mc(µ) = mc(mc)η−1
c B−1

u exp
( 3

2Ic

)

mt(µ) = mt(mt)A−1
u exp

( 9
2It + 3

2Ib + Iτ

)
mt(µ) = mt(mt)B−1

u exp
( 3

2It − 3
2Ib

)

md(µ) = md(1GeV)η−1
d A−1

d exp(3It + 3Ib + Iτ ) md(µ) = md(1GeV)η−1
d B−1

d

ms(µ) = ms(1GeV)η−1
s A−1

d exp(3It + 3Ib + Iτ ) ms(µ) = ms(1GeV)η−1
s B−1

d

mb(µ) = mb(mb)η−1
b A−1

d exp
( 3

2It + 9
2Ib + Iτ

)
mb(µ) = mb(mb)η−1

b B−1
d exp

( 3
2Ib − 3

2It

)

me(µ) = me(1GeV)η−1
e A−1

e exp(3It + 3Ib + Iτ ) me(µ) = me(1GeV)η−1
e B−1

e

mµ(µ) = mµ(1GeV)η−1
µ A−1

e exp(3It + 3Ib + Iτ ) mµ(µ) = mµ(1GeV)η−1
µ B−1

e

mτ (µ) = mτ (mτ )η−1
τ A−1

e exp
(
3It + 3Ib + 5

2Iτ

)
mτ (µ) = mτ (mτ )η−1

τ B−1
e exp

( 3
2Iτ

)

v(µ) = v0 = 174.11GeV v(µ) = v(mt)Bv exp(−3It − 3Ib − Iτ )

Au =
(

α1(µ)
α1(mt)

) 17
164

(
α2(µ)

α2(mt)

) −27
76

(
α3(µ)

α3(mt)

) −4
7

Bu =
(

α1(µ)
α1(mt)

) 2
41

(
α3(µ)

α3(mt)

) −4
7

Ad =
(

α1(µ)
α1(mt)

) 5
164

(
α2(µ)

α2(mt)

) −27
76

(
α3(µ)

α3(mt)

) −4
7

Bd =
(

α1(µ)
α1(mt)

) −1
41

(
α3(µ)

α3(mt)

) −4
7

Ae =
(

α1(µ)
α1(mt)

) 45
164

(
α2(µ)

α2(mt)

) −27
76

Be =
(

α1(µ)
α1(mt)

) 9
41

Bv =
(

α1(µ)
α1(mt)

) 9
164

(
α2(µ)

α2(mt)

) −27
76

Table 2. Comparison of analytic formulas of this analysis with those of [31], where scale
dependence of the VEVs has been ignored in the non-SUSY 2HDM

Reference [31] This analysis

mu(µ) = mu(1GeV)η−1
u A−1

u exp(3It) mu(µ) = mu(1GeV)η−1
u B−1

u

mc(µ) = mc(mc)η−1
c A−1

u exp(3It) mc(µ) = mc(mc)η−1
c B−1

u exp
( 3

2Ic

)

mt(µ) = mt(mt)A−1
u exp

( 9
2It + 1

2Ib

)
mt(µ) = mt(mt)B−1

u exp
( 3

2It + 1
2Ib

)

md(µ) = md(1GeV)η−1
d A−1

d exp(3Ib + Iτ ) md(µ) = md(1GeV)η−1
d B−1

d

ms(µ) = ms(1GeV)η−1
s A−1

d exp(3Ib + Iτ ) ms(µ) = ms(1GeV)η−1
s B−1

d

mb(µ) = mb(mb)η−1
b A−1

d exp
( 1

2It + 9
2Ib + Iτ

)
mb(µ) = mb(mb)η−1

b B−1
d exp

( 3
2Ib + 1

2It

)

me(µ) = me(1GeV)η−1
e A−1

e exp(3Ib + Iτ ) me(µ) = me(1GeV)η−1
e B−1

e

mµ(µ) = mµ(1GeV)η−1
µ A−1

e exp(3Ib + Iτ ) mµ(µ) = mµ(1GeV)η−1
µ B−1

e

mτ (µ) = mτ (mτ )η−1
τ A−1

e exp
(
3Ib + 5

2Iτ

)
mτ (µ) = mτ (mτ )η−1

τ B−1
e exp

( 3
2Iτ

)

vu(µ) = v0 sinβ(mt) vu(µ) = vu(mt)Bv exp(−3It)

vd(µ) = v0 cosβ(mt) vd(µ) = vd(mt)Bv exp(−3Ib − Iτ )

tanβ(µ) = tanβ(mt) tanβ(µ) = tanβ(mt)

× exp (−3It(µ) + 3Ib(µ) + Iτ (µ))

Au =
(

α1(µ)
α1(mt)

) 17
168

(
α2(µ)

α2(mt)

) −3
8

(
α3(µ)

α3(mt)

) −4
7

Bu =
(

α1(µ)
α1(mt)

) 1
21

(
α3(µ)

α3(mt)

) −4
7

Ad =
(

α1(µ)
α1(mt)

) 5
168

(
α2(µ)

α2(mt)

) −3
8

(
α3(µ)

α3(mt)

) −4
7

Bd =
(

α1(µ)
α1(mt)

) −1
42

(
α3(µ)

α3(mt)

) −4
7

Ae =
(

α1(µ)
α1(mt)

) 45
168

(
α2(µ)

α2(mt)

) −3
8

Be =
(

α1(µ)
α1(mt)

) 3
14

Bv =
(

α1(µ)
α1(mt)

) 3
56

(
α2(µ)

α2(mt)

) −3
8
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Table 3. Comparison of analytic formulas of this analysis with those of [31], where scale dependence
of the VEVs has been ignored in the MSSM

Reference [31] This analysis

mu(µ) = mu(1GeV)η−1
u A−1

u exp(3It) mu(µ) = mu(1GeV)η−1
u Gu(µ)

mc(µ) = mc(mc)η−1
c A−1

u exp(3It) mc(µ) = mc(mc)η−1
c Gu(µ)

× exp
(

3
2Ic(MS) + 3Ĩc(µ)

)

mt(µ) = mt(mt)A−1
u exp(6It + Ib) mt(µ) = mt(mt)Gu(µ)

× exp
(

3
2It(MS) − 3

2Ib(MS) + 3Ĩt(µ) + Ĩb(µ)
)

md(µ) = md(1GeV)η−1
d A−1

d exp(3Ib + Iτ ) md(µ) = md(1GeV)η−1
d Gd(µ)

ms(µ) = ms(1GeV)η−1
s A−1

d exp(3Ib + Iτ ) ms(µ) = ms(1GeV)η−1
s Gd(µ)

mb(µ) = mb(mb)η−1
b A−1

d exp(It + 6Ib + Iτ ) mb(µ) = mb(mb)η−1
b Gd(µ)

× exp
(

3
2Ib(MS) − 3

2It(MS) + 3Ĩb(µ) + Ĩt(µ)
)

me(µ) = me(1GeV)η−1
e A−1

e exp(3Ib + Iτ ) me(µ) = me(1GeV)η−1
e Ge(µ)

mµ(µ) = mµ(1GeV)η−1
µ A−1

e exp(3Ib + Iτ ) mµ(µ) = mµ(1GeV)η−1
µ Ge(µ)

mτ (µ) = mτ (mτ )η−1
τ A−1

e exp(3Ib + 4Iτ ) mτ (µ) = mτ (mτ )η−1
τ Ge(µ)

× exp
(

3
2Iτ (MS) + 3Ĩτ (µ)

)

vu(µ) = v0 sinβ(mt) vu(µ) = vu(MS)Gv exp(−3Ĩt)
vd(µ) = v0 cosβ(mt) vd(µ) = vd(MS)Gv exp(−3Ĩb − Ĩτ )
tanβ(µ) = tanβ(mt) tanβ(µ) = tanβ(MS)

× exp
(
−3Ĩt(µ) + 3Ĩb(µ) + Ĩτ (µ)

)

Au =
(

α1(µ)
α1(mt)

) 13
198

(
α2(µ)

α2(mt)

) −3
2

(
α3(µ)

α3(mt)

) −8
9

Gu(µ) =
(

α1(MS)
α1(mt)

) −2
41

(
α3(MS)
α3(mt)

) 4
7

×
(

α1(µ)
α1(MS)

) −43
792

(
α2(µ)

α2(MS)

) −9
8

(
α3(µ)

α3(MS)

) 8
9

Ad =
(

α1(µ)
α1(mt)

) 7
198

(
α2(µ)

α2(mt)

) −3
2

(
α3(µ)

α3(mt)

) −8
9

Gd(µ) =
(

α1(MS)
α1(mt)

) 1
41

(
α3(MS)
α3(mt)

) 4
7

×
(

α1(µ)
α1(MS)

) −19
792

(
α2(µ)

α2(MS)

) −9
8

(
α3(µ)

α3(MS)

) 8
9

Ae =
(

α1(µ)
α1(mt)

) 3
22

(
α2(µ)

α2(mt)

) −3
2

Ge(µ) =
(

α1(MS)
α1(mt)

) −9
41

(
α1(µ)

α1(MS)

) −1
8

(
α2(µ)

α2(MS)

) −9
8

Gv =
(

α1(µ)
α1(mt)

) 1
88

(
α2(µ)

α2(mt)

) 3
8

mi(t′) = mi(0)
(
α1(t′)
α1(0)

)−9
41

, i = e, µ, τ,

mj(t′) = mj(0)
(
α1(t′)
α1(0)

)−2
41
(
α3(t′)
α3(0)

) 4
7

, j = u, c, t,

mk(t′) = mk(0)
(
α1(t′)
α1(0)

) 1
41
(
α3(t′)
α3(0)

) 4
7

, k = d, s, b.

(5.1)

Comparing with (5.1), our formulas in the SM summarised
in Table 1 and given in (3.10)–(3.14) contain the additional
contributions of relevant Yukawa couplings of the third
generation. Whereas the formulas in (5.1) contain the un-
known high-scale masses mi(0) (i = e, µ, τ, u, c, t, d, s, b),
our formulas and the VEV v(0) formulas contain the VEV
and experimentally measurable masses at low energies
through the QCD–QED rescaling factors as given in (3.15).

While unravelling the RG fixed point behaviour of top
quark Yukawa coupling in the SM, Pendleton and Ross
[23] did include the scale dependence in the VEV of the

SM Higgs scalar to derive the following formulas for the
running masses of the up and down quark masses using
the variable t = (1/2) ln

(
µ2/µ2

0
)

and the dominance of
the QCD gauge and top quark Yukawa couplings over all
other couplings:

mi(t) = mi(t0)
(
α3(t)
α3(t0)

) 4
7

, i = u, c, (5.2)

mj(t) = mj(t0)
(
α3(t)
α3(t0)

) 4
7

×
[
1 +

9y2
t (t)

8πα3(t0)

{(
α3(t)
α3(t0)

) 1
7
}

− 1

]|λtD
|2/6

,

j = d, s, b, (5.3)

where

λtD ≈
(
1 − y2

b

y2
t

)
. (5.4)

In contrast to (5.2)–(5.3) our formulas do not contain
unknown high-scale parameters, but our predictions at
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higher scales are made in terms of experimentally mea-
sured parameters as inputs. In addition, our analytic for-
mulas represent the one-loop radiative corrections due to
all gauge couplings of the SM and all the third generation
Yukawa couplings. Besides, we have also obtained new for-
mulas for all quarks and charged leptons.

Using the MS scheme in the SM, Balzeleit et al [20]
have utilised the effect of the scale dependent VEV and the
dominance of QCD gauge and top quark Yukawa couplings
to obtain the following analytic formulas for the running
masses of quarks at higher scales in terms of those at lower
scales (µ0 = 1GeV),

mi(µ) = mi(µ0)G3(µ), i = u, d, c, s,

mb(µ) = mb(µ0)
[
1 +

9m2
t (µ0)

2πα3(µ0)v2(µ0)

×
{(

α3(µ)
α3(µ0)

) 1
7

− 1

}] 1
6

G3(µ),

mt(µ) = mt(µ0)
[
1 +

9m2
t (µ0)

2πα3(µ0)v2(µ0)

×
{(

α3(µ)
α3(µ0)

) 1
7

− 1

}]−1
6

G3(µ),

G3(µ) =
(
α3(µ)
α3(µ0)

) 4
7

. (5.5)

As can be verified from (3.10) and Table 1, our for-
mulas in the corresponding cases contain additional con-
tributions due to SU(2) × U(1) gauge couplings and all
third generation Yukawa couplings. Further, we have new
formulas for charged lepton masses.

As noted in Sects. 2 and 3, the RGEs for the scale
dependent VEVs in the SM and MSSM along with those
for other couplings have been obtained by Arason et al.
[16–18] but no analytic formulas have been derived by
them.

Using a top-down approach, the third generation ef-
fects on fermion mass predictions have been examined
earlier in MSSM [29], where the scale dependence of the
VEVs and the corresponding RGEs have been ignored. In
the bottom-up approach, using the same renormalisation
scheme, analytic formulas have been explicitly specified
in [31] also ignoring the scale dependence of the VEVs. In
Tables 1–3 we compare our analytic formulas with those
of [31] in SM, 2HDM and MSSM. Whereas the top quark
Yukawa coupling integral defined through (3.12) has been
predicted to affect the running of mu(µ) and mc(µ) [29,
31], our formulas predict no such effect. Similarly, whereas
the b quark and the τ lepton Yukawa coupling integrals
have been predicted to affect the running charged lep-
ton masses me(µ) and mµ(µ) [29,31], our formulas predict
no such contributions. In particular, our formulas predict
that in all the three effective gauge theories, SM, 2HDM,
or MSSM, the third generation Yukawa couplings do not
affect the running masses of the first two generations in the
small mixing limit and at one-loop level. This is in clear
contrast to the results of [29,31] where the influence of

the third generation effects have been emphasised on the
running masses of the first two generations. Another im-
portant and new feature of our formulas is that even for
the running masses of the third generation, the Yukawa
coupling integrals occur in the exponents with different
coefficients when compared with earlier analytic formulas
[29,31].

The dependence on the gauge couplings can also be
noted to be quite different in our analytic formulas.
Whereas earlier derivations [29,31] predicted the occur-
rence of the exponents Cu

i /2bi, C
d
i /2bi, and C

e
i /2bi on the

R.H.S. of (3.11), our formulas predict the corresponding
exponents to be Ci/2bi, C ′

i/2bi, and C
′′
i /2bi, respectively.

This has led to the gauge coupling factors, Bu, Bd, and
Be, to be different from the corresponding factors Au,
Ad, and Ae in the earlier formulas [29,31] as shown in
Tables 1–3 for each gauge theory. Thus our formulas at
one-loop level predict a substantially new functional de-
pendence on gauge and Yukawa couplings for the running
masses in SM, 2HDM, and MSSM when compared with
those obtained by ignoring scale dependent VEVs [29,31].

When scale dependence in the corresponding VEVs
is ignored, there are no RGEs for vu(µ) and vd(µ), in
2HDM nor in MSSM. This assumption gives tanβ(µ) =
tanβ(mt) for all higher scales µ > mt [29,31]. But inclu-
sion of the scale dependence of the VEVs through their
RGEs in (2.6) naturally leads to the new analytic formula
for tanβ(µ) given in (3.14) and (4.11) and is explained
through comparison in Tables 2–3.

Also our formulas for the case of MSSM are the same
as those obtained in [14] when the SUSY scale is assumed
to be MS = mt. But for any SUSY scale MS > mt, our
formulas given in (4.1)–(4.11) are new and have been de-
rived for the first time. In the limitMS = mt, the formulas
(4.1)–(4.11) reduce to those in (3.10) and [14].

In the next section, while making numerical predic-
tions of the running masses at higher scales at the two-
loop level in SM and MSSM and at one-loop level in 2HDM
we have made comparative studies with earlier numerical
estimations wherever they exist.

6 Numerical predictions at higher scales

The analytic formulas given in the previous section pre-
dict masses and CKM matrix elements up to the one-loop
level at higher scales. We have also numerically estimated
the effect of scale dependent VEVs on predictions of the
running masses at two-loop level. We solve the RGEs for
the Yukawa matrices and VEVs including two-loop con-
tributions in SM and MSSM [16–19,26–28] numerically
and obtain the mass matrices at higher scales from the
corresponding products of the two. For this purpose, the
elements of the CKM matrix at higher scales have been ob-
tained by running them through the one-loop RGEs given
by (3.8) with appropriate values of the coefficient c given
in (2.10)–(2.12) [29,30]. In 2HDM we carry out all numer-
ical estimations at one-loop level. We use the following
inputs for the running masses (mi), SM gauge couplings
(α1, α2, α3), electromagnetic fine structure constant (α),
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Fig. 1. Variation of running VEVs in the SM, 2HDM and
MSSM as a function of µ(t = lnµ) showing a substantial devi-
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Fig. 2. Variation of running VEVs at higher scales in MSSM
and 2HDM as a function of µ(t = lnµ) showing a substantial
deviation from the scale independence assumption

electroweak mixing angle and the CKM matrix (V ) at
µ = MZ which have been obtained from the experimental
data [26,29,31,33]:

mu = 2.33+0.42
−0.45 MeV, mc = 677+56

−61 MeV,

mt = 181 ± 13GeV, md = 4.69+0.60
−0.66 MeV,

ms = 93.4+11.8
−13.0 MeV, mb = 3.00 ± 0.11GeV,

me = 0.48684727 ± 0.00000014MeV,
mµ = 102.75138 ± 0.00033MeV,

mτ = 1.74669+0.00030
−0.00027 GeV. (6.1)

α1(MZ) = 0.016829 ± 0.000017,

α2(MZ) = 0.033493+0.000042
−0.000038,

α3(MZ) = 0.118 ± 0.003,
α−1

em = 128.896 ± 0.09,
sin2 θW = 0.23165 ± 0.000024. (6.2)

Also, we have

V (MZ) =

0.9757 0.2205 0.0030e−iδ

−0.2203 − 0.0001eiδ 0.9747 0.0373
0.0082 − 0.0029eiδ −0.0364 − 0.0007eiδ 0.9993


 .

(6.3)

For the sake of convenience we have used δ = π/2 as
in [33]. The choice of the same input quantities enables

us to compare our results on mass predictions with those
obtained with the scale independence assumption on the
VEVs in SM and MSSM [33]. We neglect mixings among
charged leptons and use the diagonal basis for up quarks.

The variations of the VEVs as a function of µ are
shown in Figs. 1 and 2 for the SM, 2HDM, and MSSM
where the initial value of tanβ(MZ) = 10 has been used
for the latter two cases. In these and certain other fig-
ures we have used the variable t = lnµ along the X-axis
where µ is in units of GeV. It is quite clear that in the SM
as well as the other cases the running effects of the VEVs
contribute to very significant departures from the assumed
scale independent values [29,31–33]. Thus, the predicted
running masses are to be different in all three cases. Since
vu(µ) decreases and vd(µ) increases with increasing µ, the
up quark masses are expected to have decreasing effects,
whereas the down quark and charged lepton masses are ex-
pected to have increasing effects at higher scales in MSSM
and 2HDM. But in the SM all the masses are expected to
have decreasing effects due to the decreasing value of v(µ).
In fact, these features are clearly exhibited in all numerical
values of the mass predictions carried out in this investi-
gation. It is to be noted that almost all fermion masses,
except the top quark, the b quark and the τ lepton near
the perturbative limits, decrease at higher scales due to
the decrease in the corresponding Yukawa couplings. But
the effect of running VEVs contribute to additional de-
creasing or increasing factors in the respective cases.

The predictions of all the charged fermion masses as
a function of t = lnµ are shown in Fig. 3 with MS = MZ
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tanβ(MS) = 10. The dashed lines are due to uncertainties in
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Fig. 7. Comparison of running mass predictions in the MSSM
(solid lines) with those obtained from scale independence as-
sumptions (dashed lines) on the VEVs. The SUSY scale has
been taken to be MZ

and in Fig. 4 with MS = 1TeV in the case of MSSM using
tanβ(MZ) = 10. The corresponding predictions in 2HDM
and SM are shown in Figs. 5 and 6. Our numerical esti-
mations agree very closely with the corresponding mass
predictions at high scales in 2HDM by Cvetic et al. [21]
for ms(µ), mb(µ), mc(µ) and mt(µ). But in 2HDM too we
have additional numerical estimations, both in the quark
and in the lepton sector. In Fig. 7 we display the compar-
ison of the mass predictions as functions of t = lnµ with
and without running VEVs in MSSM assuming MS = MZ

and tanβ = 10. Although the differences in the two types
of predictions are clearly distinguishable, they are quite
prominent in the up quark sectors. While the new contri-
butions are seen to be significant for the down quarks and
charged leptons at higher scales with µ ≥ 107 GeV, in the
case of up quarks the contributions are found to be impor-
tant starting from µ = O (TeV). As compared to the scale
independence assumption [33], our predictions are clearly
smaller for the up quarks and larger for the down quarks
and charged leptons as indicated by solid-line curves in
Fig. 7. With the input values for mt and mb in (6.1), the
lowest allowed value of tanβ(MS) is determined by ob-
serving the perturbative limit for the top quark Yukawa
coupling at the GUT scale, y2

t (MGUT)/4π ≤ 1.0 and the
highest allowed value of tanβ(MS) is determined from the
corresponding limit on the b quark Yukawa coupling.
MSSM

MS = MZ : 2.3+4.8
−0.6 ≤ tanβ(MS) ≤ 58.7+3.4

−2.0, (6.4)
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Fig. 8. Perturbatively allowed region for tan β(MS) as a func-
tion of SUSY scale MS. The lower (upper) limits are due to top
quark (b quark) Yukawa coupling. The dashed lines are due to
uncertainties in the respective input masses

MS = 1TeV : 1.7+1.3
−0.4 ≤ tanβ(MS) ≤ 64.8+3.6

−4.3. (6.5)

The allowed region for tanβ(MS) as a function of MS in
MSSM is shown in Fig. 8 where the solid (dashed) lines
are due to the central values (uncertainties) in the in-
puts of mt and mb. It is clear that the allowed region
for tanβ increases, although slowly, with increasing MS.
In the 2HDM the allowed region for tanβ is found to be
substantially larger.
2HDM

1.2+0.3
−0.2 ≤ tanβ(MZ) ≤ 68.9 ± 2.7. (6.6)

We have noted that in all three effective theories, the
difference between the one- and two-loop estimates of the
running masses at the highest scale (MU ) varies between
1–5%, the lowest discrepancy being for the leptons and
the highest being for the top quark. But in MSSM and
2HDM this discrepancy increases to 10–12% for the b and
the top quarks as the respective perturbative limits are
approached.

The running VEVs in MSSM and 2HDM lead to a
variation of tanβ(µ) as a function of µ over its initial
value at MZ . This is shown in Fig. 9 for different input
values where the dashed (solid) line represents the case
for 2HDM (MSSM). In both theories tanβ(µ) decreases
(increases) from its initial value when the latter crosses a
critical point. This critical value is tanβ(MZ) ≈ 56 (52) in
MSSM (2HDM). In Fig. 10 we present tanβ(MU ) at the
GUT scale as a function of tanβ(MZ) for both theories.
We observe a steep rise in the curves as the respective
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Fig. 14. Prediction of top quark mass mt(µ) at higher scales
(µ > MZ) as a function of µ (t = lnµ) and tanβ(µ) in MSSM
with MS = 1 TeV. The values of tan β(µ) at very µ has been
obtained through solutions of the corresponding RGE using
tanβ(MZ) = 2–58 as inputs

perturbative limits are approached in the large tanβ(MZ)
region.

Using the central values of mt(MZ), mb(MZ) and
mτ (MZ) from (6.1), we have studied the variation of
mt(µ), mb(µ) and mτ (µ) for the different values of µ =
109 GeV, 1013 GeV and 2 × 1016 GeV, each as a function
of various low-energy input values of tanβ(MZ) in MSSM
and 2HDM. These results are presented in Figs. 11–13 for
the 2HDM (dashed lines) and for the MSSM (solid lines)
with MS = MZ . It is clear that the perturbatively allowed
range of tanβ decreases with increasing µ both for MSSM
and 2HDM.
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Table 4. Running mass and VEV predictions at higher scales in the non-
SUSY standard model for the input values of the Higgs mass MM = 250GeV
and other parameters given in (6.1)–(6.3)

µ = 109 (GeV) µ = 1013 (GeV) µ = 2 × 1016 (GeV)

mu (MeV) 1.1537+0.2233
−0.2331 0.9472+0.1849

−0.1923 0.8351+0.1636
−0.1700

mc (MeV) 335.2184+31.8261
−33.5603 275.2419+26.5286

−27.8710 242.6476+23.5536
−24.7026

mt (GeV) 99.1359+10.7438
−9.8347 83.9249+10.2622

−9.0281 75.4348+9.9647
−8.5401

md (MeV) 2.3558+0.6513
−0.3538 1.9529+0.5433

−0.2953 1.7372+0.4846
−0.2636

ms (MeV) 46.9155+6.5228
−6.9737 38.8929+5.4652

−5.8228 34.5971+4.8857
−5.1971

mb (GeV) 1.3639+0.0328
−0.0398 1.0971+0.0143

−0.0248 0.9574+0.0037
−0.0169

me (MeV) 0.4665+0.0001
−0.0001 0.4533+0.0001

−0.0001 0.4413+0.0001
−0.0001

mµ (MeV) 98.4648+0.0049
−0.0050 95.6834+0.0078

−0.0084 93.1431+0.0136
−0.0101

mτ (GeV) 1.6738+0.0004
−0.0003 1.6265+0.0005

−0.0004 1.5834+0.0001
−0.0005

v (GeV) 157.5206−7.1815
+6.0558 155.7062−10.6592

−8.5945 155.6196−13.6336
+10.4664

Table 5. Predictions of running masses, VEVs and tan β at higher scales µ =
109 GeV, 1013 GeV and 2× 1016 GeV in MSSM with SUSY scale MS = 1TeV, using
two-loop RG equations

tanβ(MS) = 10 µ = 109 (GeV) µ = 1013 (GeV) µ = 2 × 1016 (GeV)

mu (MeV) 1.1618+0.2226
−0.2345 0.8882+0.1694

−0.1794 0.7238+0.1365
−0.1467

mc (MeV) 339.4064+31.2929
−33.4804 258.0945+23.8287

−25.8339 210.3273+19.0036
−21.2264

mt (GeV) 112.3144+17.0392
−13.7215 94.3698+22.5577

−14.4831 82.4333+30.2676
−14.7686

md (MeV) 2.3842+0.6582
−0.3574 1.8290+0.5111

−0.2779 1.5036+0.4235
−0.2304

ms (MeV) 47.4812+6.5845
−7.0454 36.4261+5.1588

−5.4807 29.9454+4.3001
−4.5444

mb (GeV) 1.5920+0.1038
−0.0915 1.2637+0.1189

−0.0893 1.0636+0.1414
−0.0865

me (MeV) 0.4290+0.0001
−0.0001 0.3911+0.0002

−0.0002 0.3585+0.0003
−0.0003

mµ (MeV) 90.5439+0.0169
−0.0173 82.5539+0.0346

−0.0330 75.6715+0.0578
−0.0501

mτ (GeV) 1.5429+0.0006
−0.0006 1.4085+0.0009

−0.0008 1.2922+0.0013
−0.0012

tanβ 8.2314−0.5046
+0.3807 7.4350−0.9752

+0.6302 6.9280−1.5156
+0.8234

vu (GeV) 141.7765−9.7365
+7.6253 130.5455−18.0431

+12.1155 123.8177−27.8954
+15.7651

vd (GeV) 17.2237−0.1352
+0.1241 17.5581−0.1426

+0.1302 17.8718−0.1492
+0.1354

tanβ(MS) = 55 µ = 109 (GeV) µ = 1013 (GeV) µ = 2 × 1016 (GeV)

mu (MeV) 1.1687+0.2225
−0.2346 0.8889+0.1675

−0.1795 0.7244+0.1219
−0.1466

mc (MeV) 339.5917+31.2621
−33.5026 258.2929+23.3295

−25.8144 210.5049+15.1077
−21.1538

mt (GeV) 118.6588+19.9035
−15.4790 104.2363+32.7015

−18.2028 95.1486+69.2836
−20.659

md (MeV) 2.3774+0.6542
−0.3553 1.8219+0.5054

−0.2755 1.4967+0.4157
0.2278

ms (MeV) 47.3523+6.5303
−7.0069 36.2891+5.0777

−5.4340 29.8135+4.1795
−4.4967

mb (GeV) 1.8297+0.1667
−0.1376 1.5768+0.2640

−0.1685 1.4167+0.4803
−0.1944

me (MeV) 0.4276−0.0003
+0.0001 0.3893−0.0005

+0.0002 0.3565−0.001
+0.0002

mµ (MeV) 90.2779−0.0508
+0.0318 82.2064−0.1024

+0.0468 75.2938−0.1912
+0.0515

mτ (GeV) 1.6867+0.0056
−0.005 1.6574+0.0188

−0.0148 1.6292+0.0443
−0.0294

tanβ 53.6122−2.3644
+1.5356 52.7633−6.3597

+2.9538 52.0738−16.5475
+4.3757

vu (GeV) 141.2095−10.6285
+8.1355 127.4742−22.6973

+13.8538 117.7947−46.7214
+19.2752

vd (GeV) 2.6339−0.0859
+0.0741 2.4159−0.158

+0.1206 2.2620−0.2615
+0.1661
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Table 6. Predictions of running masses, VEVs and tan β in 2HDM at higher
scales using one-loop RG equations

tanβ(MS) = 10 µ = 109 (GeV) µ = 1013 (GeV) µ = 2 × 1016 (GeV)

mu (MeV) 1.2021+0.2309
−0.2417 0.9908+0.1919

−0.2002 0.8749+0.1701
−0.1772

mc (MeV) 349.2805+32.6824
−34.5798 287.8975+27.3606

−28.8305 254.2131+24.3398
−25.5998

mt (GeV) 103.5011+11.3400
−10.2307 88.2332+11.1753

−9.5397 79.6373+11.1974
−9.127

md (MeV) 2.4547+0.6748
−0.366 2.0430+0.5650

−0.3069 1.8204+0.505
−0.2743

ms (MeV) 48.8852+6.7278
−7.2144 40.6860+5.6602

−6.0484 36.2544+5.0700
−5.4083

mb (GeV) 1.6281+0.0910
−0.0854 1.3709+0.0854

−0.0775 1.2309+0.0826
−0.0730

me (MeV) 0.4662+0.0001
−0.0001 0.4529+0.0001

−0.0001 0.4407+0.0001
−0.0001

mµ (MeV) 98.4132+0.0050
−0.0051 95.5970+0.0086

−0.0086 93.0197+0.0122
−0.0122

mτ (GeV) 1.6752+0.0004
−0.0004 1.6283+0.0004

−0.0004 1.5851+0.0005
−0.0005

tanβ 8.1956−0.3894
+0.3255 7.6757−0.5649

+0.4496 7.3543−0.6975
+0.5348

vu (GeV) 155.6481−7.4729
+6.2622 152.8315−11.3442

+9.0595 151.9551−14.5219
+11.1741

vd (GeV) 18.9914−0.0098
+0.0095 19.9110−0.0137

+0.0131 20.6620−0.0167
+0.0157

tanβ(MS) = 55 µ = 109 (GeV) µ = 1013 (GeV) µ = 2 × 1016 (GeV)

mu (MeV) 1.2021+0.2309
−0.2417 0.9908+0.1919

−0.2002 0.8749+0.1701
−0.1772

mc (MeV) 349.2889+32.6905
−34.5782 287.9066+27.3646

−28.8338 254.2223+24.3441
−25.6031

mt (GeV) 106.6700+12.2719
−10.9231 92.1000+12.6648

−10.5174 83.9317+13.2279
−10.3226

md (MeV) 2.4547+0.6748
−0.3660 2.0430+0.5650

−0.3069 1.8204+0.5050
−0.2743

ms (MeV) 48.8888+6.7295
−7.2159 40.6898+5.6622

−6.0498 36.2584+5.0720
−5.4099

mb (GeV) 1.7719+0.1203
−0.1092 1.5392+0.1272

−0.1092 1.4128+0.1353
−0.1162

me (MeV) 0.4662+0.0001
−0.0001 0.4529+0.0001

−0.0001 0.4407+0.0001
0.0001

mµ (MeV) 98.4302+0.0054
−0.0055 95.6235+0.0097

−0.0094 93.0536+0.0146
−0.0136

mτ (GeV) 1.7659+0.0028
−0.0025 1.7775+0.0073

−0.0060 1.7851+0.0136
−0.0107

tanβ 54.9963−1.5534
+1.1589 55.7094−2.4787

+1.6588 56.5831−3.2730
+1.9895

vu (GeV) 155.7178−7.8644
+6.5265 152.0846−12.3141

+9.6439 150.4478−16.1914
+12.0879

vd (GeV) 2.8314−0.0649
+0.0578 2.7299−0.1042

+0.0892 2.6588−0.1404
+0.1161

We have examined the simultaneous variation ofmt(µ)
as a function of µ and tanβ(µ) which is displayed in
the three dimensional plot of Fig. 14 for the input value
of mt(MZ) = 181GeV and tanβ(MS) = 2–58, where
MS = 1TeV. Using the top quark mass at µ = MZ , we
have calculated mt(µ) and tanβ(µ) at every µ between
MS − MU for the input value of tanβ(MS) = 2–59. The
results are displayed in the three dimensional plot. The
variations of the running mass predictions at the GUT
scale (MU = 2 × 1016 GeV) as a function of the SUSY
scale (MS = MZ − 104 GeV) are shown in Figs. 15 and 16
for the third generation fermions using various input val-
ues of tanβ(MS). We find that the top quark mass at the
GUT scale at first decreases sharply in the smaller and
larger tanβ regions as MS increases and then remains al-
most constant for MS = 3 × 103–104 GeV. Similarly the
predicted b and τ masses decrease with increasing MS al-
though the fall-off is slower in the case of τ in the large
tanβ region.

Numerical values of predictions of the running masses
are presented in Table 4 for the SM at the three differ-
ent scales µ = 109 GeV, 1013 GeV and 2 × 1016 GeV. The

two-loop contributions to the RG evolution of the Yukawa
couplings depends, although very weakly, upon the Higgs
quartic couplings λ, which is related to the Higgs mass
(MH) and VEV (v), λ = M2

H/(4v
2). We have used the

two-loop RGEs for λ(µ) for the SM [17] and evaluated
the running masses and VEVs of Table 4 for the input
value of the Higgs mass MH = 250GeV. Changing the
Higgs mass in the allowed range of MM = 220–260GeV
[33] does not change the results of Table 4 significantly.
The uncertainties in the quantities are due to those in the
running masses at µ = MZ . The mass matrices for Mb(µ)
and Mu(µ) are modified by the factors v(µ)/v(MZ) where
v(MZ) ≈ 174GeV and the CKM matrices at higher scales
remain the same as in [33]. The computed values of masses
are found to be less when compared to those obtained with
the scale independence assumption [33]. This is clearly un-
derstood as the running VEV in the SM decreases with
increasing µ. For example, in the SM at µ = 2× 1016 GeV
our predictions are (mu,mc,mt) = (0.83MeV, 242.6MeV,
75.4GeV) as compared to [33] (mu,mc,mt) = (0.94MeV,
272MeV, 84GeV) where the running effect on the VEV
has been ignored. In Tables 5 and 6 numerical values of
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masses, VEVs and tanβ are given at the same three scales
for the MSSM and 2HDM with tanβ(MZ) = 10 and 55 in
each of the two theories. As emphasised in this paper our
high-scale estimations predict quite significantly different
values for the running masses, especially in the up quark
sector. Although the CKM matrices at high scales remain
the same as under scale independence assumptions on the
VEVs, the up quark mass matrices are modified by the fac-
tor vu(µ)/vu(MS), but the down quark and charged lepton
mass matrices are modified by the factor vd(µ)/vd(MS). In
the MSSM with MS = MZ and tanβ(MZ) = 10, includ-
ing the running effect of the VEVs, the GUT scale predic-
tions are (mu,mc,mt) = (0.70MeV, 200MeV, 73.5GeV)
as compared to [33] (mu,mc,mt) = (1.04MeV, 302MeV,
129GeV). But by increasing the SUSY scale to MS =
1TeV and in the large tanβ region, we find a substantial
decrease in the predicted values of the top quark mass
at the GUT scale, leading to (mu,mc,mt) = (0.72MeV,
210MeV, 95.1GeV). This is understood by noting that
tanβ ≈ 55 is closer to the perturbative limit for which
the top quark Yukawa coupling is larger. Similarly from
Table 5 we note a nearly 20% increase in themb(MU ) with
the increase of tanβ from 10–55. Similar effects are also
noted in 2HDM as can be seen from Table 6, where mt

decreases by nearly 7% as tanβ increases from 10–55. For
a larger effect the increase has to be larger in tanβ since
the perturbative limit in this case is closer to tanβ ≈ 69
as compared to the MSSM case, where the limiting value
is tanβ ≈ 59.

7 Summary and conclusion

In the frequently exploited renormalisation scheme in
gauge theories, the Yukawa couplings and VEVs in the
SM, 2HDM and MSSM run separately [16–31,33]. The ef-
fect of scale dependence of the VEVs has been ignored
while deriving analytic formulas [29,31] and obtaining nu-
merical predictions at higher scales for the running masses
of fermions [33], but it has been considered in [16–25] and
it has more appropriately been taken into account more
recently [14] for MSSM. In this paper, we have derived
new analytic formulas in the SM and 2HDM and gener-
alised the formulas of [14] for any supersymmetry scale
(MS > MZ). The analytic formulas are given in (3.10)–
(3.14), summarised explicitly and compared with formulas
derived by other authors in Tables 1–3. The new formulas
exhibit a substantially different functional dependence on
gauge and Yukawa couplings in all the three effective theo-
ries. In particular, the running masses of the first two gen-
erations are found to be independent of the Yukawa cou-
plings of the third generations in the small mixing limit.
Numerical predictions at two-loop level show that all the
running masses in the SM and only the up quark masses
in the MSSM and 2HDM decrease at high scales when
compared with the predictions taking scale independent
VEVs. But in the case of MSSM and 2HDM, the down
quark and the charged lepton masses increase over the cor-
responding predictions obtained with scale independent
assumptions on the VEVs. Compared to the MSSM the

perturbatively allowed region of tanβ is larger in 2HDM.
In MSSM the allowed region shows a slow increase with
the SUSY scale. We have also made predictions of the
running masses at the GUT scale as a function of super-
symmetry scale, exhibiting new behaviours. We suggest
that these new analytic formulas and improved estimates
on the running masses and tanβ at high scales be used
as inputs to test models proposing unified explanations of
the quark and lepton masses.
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