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Abstract. Including contributions of scale-dependent vacuum expectation values, we derive new analytic
formulas and obtain substantially different numerical predictions for the running masses of quarks and
charged leptons at higher scales in the SM, 2HDM and MSSM. These formulas exhibit significantly different
behaviours with respect to their dependence on gauge and Yukawa couplings from those derived earlier. At
one-loop level, the masses of the first two generations are found to be independent of the Yukawa couplings
of the third generation in all three effective theories in the small mixing limit. Analytic formulas are also
obtained for the running of tan 8(u) in 2HDM and MSSM. Other numerical analyses include a study of
the third generation masses at high scales as functions of the low-energy values of tan 8 and the SUSY

scale Ms = Mz — 10* GeV.

1 Introduction

One of the most attractive features of current investi-
gations in gauge theories is the remarkable unification
of the gauge couplings of the standard model (SM) at
the SUSY GUT scale, My = 2 x 109 GeV, when ex-
trapolated through the minimal supersymmetric standard
model (MSSM) [1]. Although the non-supersymmetric
standard model (SM), or the two-Higgs doublet model
(2HDM) do not answer the question of gauge hierarchy,
unification of the gauge couplings is also possible at the
corresponding GUT scales when they are embedded in
non-SUSY theories like SO(10), and the symmetry break-
ing takes place in two steps with left—right models as inter-
mediate gauge symmetries [2]. Grand unification of gauge
couplings of the SM in single-step breakings of GUTs has
also been observed when the grand desert contains ad-
ditional scalar degrees of freedom [3], and the minimal
example is a £(3,0,8) of SM contained in 75 C SU(5) or
210 € SO(10) with mass M, = 1011-10'3 GeV [4]. Unifi-
cation of gauge couplings in non-SUSY SO(10) has been
demonstrated with relatively large GUT threshold effects
[5]. Yukawa coupling unification at the intermediate scale
has also been observed in non-SUSY SO(10) with 2HDM
as the weak scale effective gauge theory [6]. Apart from
the unity of forces at high scales, SM, 2HDM and MSSM
have tremendous current importance as effective theories,
as they emerge from a large class of fundamental theories.

Recent experimental evidences in favour of neutrino
masses and mixings have triggered an outburst of mod-
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els, many of which require running masses and mixings
of quarks and charged leptons at high scales as inputs
for obtaining predictions in the neutrino sector [7,8]. The
running masses are not only essential at the weak scale,
but they are also required at the intermediate and the
GUT scales in order to testify theories based upon quark—
lepton unification with different Yukawa textures and for
providing a unified explanation of all fermion masses [9—-
13]. Quite recently, the extrapolation of running masses
and couplings to high scales have been emphasised as an
essential requirement for testing more fundamental theo-
ries [13].

In a recent paper one of us (M.K.P) and Purkayastha
[14] have obtained new analytic formulas and numerical
estimations for the fermion masses at higher scales in
MSSM, including contributions of scale-dependent vac-
uum expectation values (VEVs), where the SUSY scale
(Msg) was assumed to be close to the weak scale (Mg ~
Mz). In this paper, we extend such investigations to SM,
2HDM and MSSM with the SUSY scale Mg > O (TeV).

It is also possible that in a different renormalisation
scheme, similar to that formulated by Sirlin et al. [15],
the VEVs themselves do not run when they are expressed
in terms of physical parameters defined on the mass shell.
This makes it possible to avoid separate running of the
VEVs and Yukawa couplings, but to have just the fermion
masses directly as running quantities. While it would be
quite interesting to examine the consequences of such a
scheme, the purpose of the present and recent works [14]
is to address the outcome of the most frequently exploited
renormalisation scheme where the Yukawa couplings and
the VEVs run separately [16-24].
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This paper is organised in the following manner. In
Sect. 2 we cite examples where running VEVs have been
exploited by a number of authors and state relevant renor-
malisation group equations (RGEs). In Sect.3 we derive
analytic formulas. In Sect.4 we show how the formulas
derived earlier for MSSM are modified when Mg > M.
Section 5 gives a comparison of our formulas with other
ones derived earlier in all the three gauge theories. Nu-
merical predictions at higher scales are reported in Sect. 6.
A summary and conclusions are stated in Sect. 7.

2 RGEs for couplings
and vacuum expectation values

After the pioneering discovery of b—7 unification at the
non-SUSY SU(5) GUT scale [25], a number of theoretical
investigations have been made to examine the behaviour
of Yukawa couplings and running masses at higher scales.
Following the frequently exploited renormalisation scheme
[16-24] where the Yukawa couplings and the VEVs run

“oo

separately, the running Dirac mass of the fermion “a” is

defined by
Ma(/u‘) = YG(M)U(I(M)' (21)

Then the running of M, (u) is governed both by the RGE
of Y, (i) and v,(p). To cite some examples: Grimus [22]
has derived approximate analytic formulas in SM for all
values of p extending up to the non-SUSY SU(5) GUT
scale utilising the corresponding scale-dependent VEV. In
the discovery of fixed point Yukawa couplings, Pendleton
and Ross [23] have exploited the RGE of the SM Higgs
VEV to derive the RGEs of the running masses from
uw = My — Mgur. Anomalous dimensions occurring in
the RGEs of respective VEVs have been explicitly derived
and stated up to two loops by Arason et al. [16,17] and
by Castano, Pirad and Ramond [18] for SM and MSSM.
While investigating renormalisation of the neutrino mass
operator, Babu, Leung and Pantaleone [24] have derived
the RGE for tan 5() in a class of 2HDM as a consequence
of running VEVs in the model. More recently, Balzeleit et
al. [20] have utilised the RGE of the VEV in SM to de-
termine running masses for p = My, — 101 GeV. Cvetic,
Hwang and Kim [21] have derived RGEs for the VEVs in
2HDM and utilised them to obtain running quark-lepton
masses at high scales and also investigate the suppression
of a flavour changing neutral current in the model. Most
recently the RGEs of running VEVs have been utilised
by one of us (M.K.P.) and Purkayastha [14] who have ob-
tained new analytic formulas and numerical estimations
of the fermion masses at higher scales taking the SUSY
scale Mg ~ M.

We consider only the class of 2HDM where &,, gives
masses to up quarks and @4 to down quarks and charged
leptons. For the sake of simplicity we ignore the neutrino
mass in the present paper; this will be addressed sepa-
rately. Our definitions and conventions for the Yukawa
couplings and masses are governed by the following
Yukawa Lagrangian (superpotential) in SM or 2HDM
(MSSM) and the corresponding VEVs of Higgs scalars:
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SM
Ly = Q YyPUr + Q. YpPDg + I YpPER + h.c.,
(@ () = v(p). (2:2)
2HDM, MSSM
Ly = QrYuP,Ur + QLYpPuDr
+ZLYE¢dER + h.c.,
(@0(1)) = vu(p) = v(p)sin B(p),
(@5(1)) = va(p) = v(p) cos B(u),
v () = v (1) + 3 (1),
tan B(u) = vu (1) /va(p). (2.3)

The relevant RGEs for the Yukawa matrices at one-loop
level for the three effective theories are expressed as [16—
19,26-28]

167 2dYU [ (3YUY(} +3aYpY,) + aYEY];L)

+ g (bYUYJ + CYDYg) — Z C(u) Yo,
1672 dc}l/tD = [ (3aYUYJ +3YpY) + YEYPE)

+ 2 (bYDYg + eV - ZC(d) Yp,
167r2% = [Tr (3aYUY,} +3YpY) + YEYET)

n ngEYET - (24)

The RGEs for the VEV in the SM have been derived up
to two loops from wave function renormalisation of the
scalar field [16,17,19,20,22,23] and the one-loop equation
is

167 2 Crg? = Tr (3 +3YpYf + Viv})| v

(2.5)
where ¢ = In p.
The RGEs for v,(a = u,d) in the 2HDM up to one
loop and in MSSM up to two loops have been derived in
[16-19,21]. The one-loop equations in both theories are

dv

2 u v 2
1672t = ;Cigi—Tr (3YUY,}) Vas

dvd v
16724 Z:Ci g2 = Tr (3YpY} +YiY}) | vas (26)
whereas charged lepton Yukawa contributions were

ignored in the R.H.S. of (2.6) for the 2HDM in [21], we
have included them. The gauge couplings in the three
models obey the well-known one-loop RGEs:

dg;
dt

16m% =22 = b;gs. (2.7)
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Two-loop contributions have been derived by a number
of authors [16-19,22-28]. The coefficients appearing in
the R.H.S. of (2.4)—(2.7) are defined in the three differ-

ent cases:
SM, 2HDM
W (179
Ci - (27478)7
19
d _ - —
Ci - <47478)7
. (99
Ci - <474a0>7
9 9
v (2. 2 0). 2
ot = (55:50) (2.8
MSSM
. (13 .16
- (202
7 16
d _ - -
Ci - (15337 3>7
9
ce=(=,30
7 (57 ) )a
3 3
v
V= — — 2.
cr = (55:3) (2.9
SM
41 19
bi: In a0 i
1006 7)
(a,b,c) = (1,1,-1) (2.10)
2HDM
21
bz: 5 T )
(5-7)
1
(a,b,c) = <O,1,3>. (2.11)
MSSM

(a,b,c) = (0,2, §> . (2.12)
For the sake of simplicity we have neglected the Yukawa
interactions of the neutrinos. Assuming that the right-
handed neutrinos are massive (My > 10'3 GeV) our for-
mulas are valid below My to a very good approximation
even if such interactions are included.

3 RGEs and analytic formulas
for running masses

Using the definition (2.1) and (2.4)—(2.12), we obtain the
RGEs for the mass matrices in the broken phases of SM,
2HDM, or MSSM in the following form:
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1672 dZU = (— ZC},g? +avyY) + BYDYg> My,
16w2% = (— Z Clg? + DYy Yy + aYDYg> Mp,
16w2% = ( ch’gf + 5YEYET> Mg, (3.1)

where the coefficients in the R.H.S. are defined for the
three cases:

SM, 2HDM
2
C? - <5a058> )
1
07{ = <_57078) )
Cl = (9,0,0> (3.2)
5
MSSM
43 9 16
Ci = Snd a0 o |
<60 1 3)
,_ (19916
Ci = (60’4’ 3)’
33 9
no__ 220 <
[ 207 470) )
(a,é, 5) = (3,1,3) (3.3)
M 3 33
<a7ba ) = <2725 2) (34)
2HDM 313
(a,b, C) = (2, 5, 2) . (35)

Defining the diagopal mass matrices Mg, the diagonal
Yukawa matrices (Yr) and the CKM matrix (V') through
biunitary transformations Lp and Rp on the left(right)-
handed fermion F1,(FR) with F =U,D, E,

Mp = Ly MrRp,

Yp = LTFYFRF,

M} = L, MpM}.Lp,

V2 =LLypY\Lp,

V =L Lp, (3.6)

and following the procedures outlined in [14,29], we obtain

dME NP 1 5o
- M,LL} — 2N
at { v bvlu| T 16 Zz: 9

+ 2a¥3NIE + b (VIBVING + NgviZvT],
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iz,
dt

- [Mg,LgLD} +— [—2205931\2}7
+2aVEN?E 4+ b (VW,?VM,% + M,%VW}?V” :
dM?
at

- [M,%J LTELE}

1 . o
+ 63 [—2ZC;’g3M,%3 +28VEAME|,  (37)
%

where Lp = dLp/dt.

We point out that in the corresponding RGEs for
Yukawa couplings given by (2.13) in [29], the terms —2 ).
Crg?YZ/ (167%), —2%, Clg?Y3/ (1672) and —2 %, Csg?
Y2/ (1672) are missing from the R.H.S.

The diagonal elements of LTFLF (F = U/D,E) are
made to vanish in the usual manner by diagonal phase
multiplication. The non-diagonal elements of both sides of
(3.7) give the same RGEs for the CKM matrix elements
as before, which on integration yields [29,30]

[Vag(m)lexp (3¢ (I(p) + In(w))) »
af = ub, cb, th, ts,

[Vag(me)l,
otherwise.

Vas(p)| = (3.8)

Taking diagonal elements of both sides of (3.7) and us-
ing dominance of the Yukawa couplings of the third gener-
ation over the first two, except the charm quark, we obtain
RGEs for the mass eigenvalues of quarks and leptons:

dm,, ~
67T2F = *Zcigiz Jrb?JI%|Vul>|2 My,
dm, [ N ~
16m° =1 = |= > Cig] + ay; + by Vs |* | me,
L
gdmy 2, =2 7 2 2
6m E = —Zcigi + ay; +byb\th\ my,
dm; ~ .
167T2d7tj = _Zcégf +byt2|‘/tj|2 mg, J = d,S,
dmb [ - ~
16m° =12 = | = Cigl +ay; + by |V |*| mu,
167 Qde — | _ ! 2 . s
dt - Z 191 m]a J =€,
dm, | i
1672 Zz = |-Y"crg?+ k| m,. (3.9)

Integrating (3.9) and using the corresponding low-energy
values, the new analytic formulas are obtained in the small
mixing limit:

ma(p) = my(1GeV)n, ' B,
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me(p) = me(me)n; ' Byt exp(ale),
my(p) = my(my) Bt exp(al, + bly),
mi(p) = mi(1GeV)n; "B, i=d,s,
my(p) = my(mp)n, By exp(al, + bly),
mi(u) = m;(1GeV)n; "B Y, i =e,p,
m‘r(ﬂ') = mr(m‘r)nr 1B exp(EIT), (310>
where
Ci/(2b;
u Oli(mt) )
/(26:)
o (k)
B =
‘ H (ai(mt)> ’
CY /(26:)
ai(p) >
B, = 3.11
(o 1y
We have
() = —— /mu 2(4/)dt! (3.12)
FH) = 1672 Jio Yy . .

The ratio ny (f = u,d, ¢, s,b,e, 1, 7) appearing in (3.10) is
the QCD-QED rescaling factor for the fermion mass my.
Integration of (2.5) and (2.6) gives analytic formulas for
the running VEVs in the SM, 2HDM, and MSSM:

ug) \ /G50
o) = o(m) [ (a;(fjjf))
x exp(—3I; — 31, — I),

o)\ G200
i) = vl T (280 ) 7 exp(-31),

a;(my)
RNV
va(p) = va(mo) [ [ ( (1) ) exp(=31L, — Ir),

(3.13)

a;(my)

where C? has been defined through (2.8) and (2.9). As
derived in [14] for the MSSM, the formula for running
tan G(u) has the same form in the 2HDM at one-loop level:

tan B(u) = tan B(me) exp (=31:(1) + 31y (1)

+1- (1)) , (3.14)

which is obtained by integrating (2.6). The QCD-QED
rescaling factors occurring in (3.10) have been determined
through the running of SU(3)c X U(1)em gauge couplings
26,29, 31]

no = 238503,

ns = na = 2.3679°35,

Ne = 2.097027

m = 1535008,

Ne = My ~ 1, = 1.015. (3.15)
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4 Formulas in MSSM for Mg > M,

In the MSSM the natural SUSY scale (Ms) could be very
different from the weak scale with Mg = O (TeV), whereas
Mg > 1TeV has a gauge hierarchy problem. As our new
contribution in MSSM in this paper, compared to [14],
we present new analytic formulas for all charged fermion
masses for any SUSY scale Mg > Myz by running them
from m; — Mg as in SM and then from Mg— i as in MSSM.
We have

my (1) = mu(1GeV)ng ' Gu(p), (4.1)
mc(”) = mc(mC)nc_lGu(M)
X exp (2IC(MS) + 3I~C(M)> , (4.2)

(i) = malm) Gl exo (31085) = S0

+31,(p) + fb(u)>, (4.3)
m;(p) = mi(1GeV)n; Ga(p),

) = ), Gl exp (5 108

i=d,s, (4.4)

SLOR) +3000 1), @)
mi(p) = mi(1GeV)n; 'Ge(p), i=e,pu, (4.6)
me (i) = me(m-)n; ' Ge(p)
conp (S1.00) 430, (4.7)
where

Furthermore,

B 1 Inp
00 =g | s, (49)

n Mg
and I;(Ms) is defined through (3.12) with p = Mg. Run-
ning of the elements of the CKM matrix in the MSSM
leads to modification by the following formulas:

125
[Vag(me)l exp (5 (I(Ms) + I(Ms))
— (L + B(w)) .
Vas(p)| = af = ub, cb, th, ts, (4.10)
[Vas(me)l,
otherwise.

The one-loop formulas for v, (1), va(r) and tan B(u)
are also modified:

vu () = vu(Ms) [ (e ()ei (me)) /3
X eXp(—Sft),
va(p) = va(Ms) T ] ()i (my)) /)
x exp(—3I, — I),
tan B(p) = tan 3(Ms)
X exp (—3ft(u) +3L,(p) + I}(u)) . (4.11)

The analytic formulas (4.1)—(4.11) hold good for any value
of my < Mg < p. It may be noted that in the limit of
Mg — my, Ip(Ms) — 0, Iy(p) — Ip(p) and the formulas
(4.1)—(4.11) reduce to those obtained in [14].

5 Comparison with other formulas

In this section, by comparing with formulas obtained by
other authors [20,22,23,25,29,31], we show that our for-
mulas are new and are clearly different. Our numerical
computations will be compared with other numerical re-
sults in Sect.6. The basic reasons for the difference of
other formulas from ours are that in earlier derivations
either the scale dependence of the VEVs has been ig-
nored, or even if it has been included, certain approxi-
mations like ignoring all other contributions except those
due to the SU(3)c gauge and top quark Yukawa cou-
plings have been made. Also, while some other deriva-
tions have used a top-down approach containing unknown
high-scale masses in the formulas, our formulas contain
running masses at low energies determined from experi-
mental data. Our formulas for the SM, 2HDM and MSSM
are given in (3.10)—(3.14), (4.1)—(4.11) with the definition
of coefficients through (2.8)—(3.5), and they are further ex-
plicitly elucidated in Tables 1-3 for the sake of comparison
with other formulas.

In the earliest studies of the behaviour of running
masses of fermions [22,25] at higher scales, the effect of
the scale dependent VEV in the SM has been included to
derive analytic formulas for the masses of quarks and lep-
tons of three generations. Using the variable ¢/ = In M /pu
and neglecting all one-loop contribution of Yukawa cou-
plings in the RGEs, the following approximate formulas
have been derived in the top-down approach, at any lower
scale p < M:

=0 (38)" (36)
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Table 1. Comparison of analytic formulas of this analysis with those of [31], where scale
dependence of the VEV has been ignored in the non-SUSY standard model. Here 7; (i =
e, i, T,d, s,b,u, c) are the QCD-QED rescaling factors given in (3.15)

Reference [31] This analysis

my ()

my(1GeV)ng Ay exp(31; 4+ 31, + I;)  mu(p) = my(1GeV)n, ' B!

me(p) = me(me)ne Ayt exp(3L + 31, + Ir) me(p) = me(me)ne ' By exp (51c)
ma() = me(me) Ay exp (31 + 31 + 1) ma () = mu(ma) B exp (310 = 51b)
ma(p) = ma(1GeV)n; " Ay exp(3L + 31y + 1) ma(u) = ma(1 GeV)n; B!
ms(p) = ms(1 GeV)n;lAd exp(3ly + 31y + I;) ms(p) = ms(1 GeV)n;lB_
ma (1) = my(ma)n, " Ay exp (31 4+ 51 + 1) mi(p) = my(me)n, By exp (31b — 31¢)
me(p) = me(1GeV)n A exp(31; + 31, + I;)  me(p) = me(1GeV)n, B!
mu(p) =my(1 GeV)nu YAZYexp(3I, + 31, + 1) my () = my(1 GeV)n;lB;
mT(u) mr(m.)nr Az exp (3[,5 + 31 + gIT) m. () = m-(m.)n7 BZ " exp (%IT)
v(p) = 174.11 GeV v(p) = v(me)By exp(—31; — 31, — 1)
A7 =27 =4 2 =4
Av= (i)™ ) ™ () T = (i) T () T
5 =27 —4 —1 =4
A= ()™ (30) T ()T B (@) T (3)
45 =27 9
Ae= (as) ™ () ™ Be= ()"
_9 —27
B = (o) ™ () ™

Table 2. Comparison of analytic formulas of this analysis with those of [31], where scale
dependence of the VEVs has been ignored in the non-SUSY 2HDM

Reference [31] This analysis
mu(p) = mu(1GeV)ng ' Ayt exp(31:) mu (i) = myu(1GeV)n, 1By *
me(p) = me(me)ns ' Ay exp(31¢) me(p) = me(me)n: ' Byt exp (51c)
ma() = me(m) A7 exp (2 + 114) ma() = me(me) By Vexp (31 + L13)
ma(p) = ma(1GeV)n; ' A, exp(31, + I) mq(p) = ma(l GeV)nd ‘B!
ms(p) = ms(1 GeV)m 1Ad exp(31y + 1) ms(u) = ms(1GeV)ns B!
me () = mu(my)m, " A7 " exp (5L + 3+ L) mu(p) = mi(me )i, ' Byt exp (31 + 314)
me(p) = me(1GeV)nz Az  exp(31, + I,) me(p) = me(1GeV)ns ' B!
mu(p) = mu(1GeVn, *AZ " exp(31, + 1) myu(p) = mu(1GeV)n, ' B!
m- () = m- (mT)nT A lexp (311, + SIT) m,(p) = mT(mT)nT B exp(%IT)
vu(p) = vo sin B(my) vu () = vu(mai) By exp(—31¢)
va(p) = vo cos B(my) va(u) = vg(ms) By exp(—31, — I.)
tan 3(u) = tan B(m.) tan 3(u) = tan B(mi)
x exp (=31:(p) + 3Ip (1) + I+ (1))

A7 =3 =4 1 =4
A= () (305) 7 (3e5) T = ()™ (3)
A= () ™ () © () T ma= () ()
Ae = (ﬂ%)m (aiisf:t)))T = (ai?igt)))ﬁ

Gac))
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Table 3. Comparison of analytic formulas of this analysis with those of [31], where scale dependence

of the VEVs has been ignored in the MSSM

Reference [31]

This analysis

mu(p) = mu (1 GeV)n, Ayt exp(31) M (1) = mu(1GeV)ng ' Gu(p)
me(p) = me(me)ne Ayt exp(31e) me (1) = me(me)ne ' Gu(p)
X exp (%IC(MS) + 3fc(u))
me(p) = me(me) Ay exp(61; + I) me(p) = me(me)Gu(p)
xexp ($1(Ms) — $1,(Ms) +31u() + T (1))
ma(p) = ma(1GeV)ng ' A7 exp(3y + 1) ma(p) = ma(1GeV)ng ' Ga(p)
ms(p) = ms(1 GeV)m 1Ad exp(3lp + 1) ms(p) = ms(1GeV)ng ' Galp)
m(p) = my(me)n, T AG " exp(le + 61 + 1r)  my(p) = me(ma)n,  Ga(p)
xexp (31o(Ms) = 31(Ms) + 3Ty (1) + To(11))
me(p) = me(1GeV)ne 'AZ expBL, + 1) me(p) = me(1GeV)ne ' Ge(p)
mu(ﬂ) = mu(l GeV)nﬁlAél exp(3L, + I) mu(ﬂ) = mu(l GeV)m 1Ge( )
my(p) = mqy(m-)n: AZ exp(3L, +415) me(p) = mr(me)n7  Ge(p)

xexp (31, (Ms) + 31, (1))

vu(p) = vo sin B(m) vu(p) = Uu( s)Guexp(=3L)
va(p) = vo cos B(my) va(p) = va(Ms)Gy exp(—31, — I,)
tan (1) = tan B(m.) tan 8(s) = tan 3(Ms)

|
<l

13 -3
A = ((ealw) VT8 ([ az(n) ) 2 (Las(w)
“ ay(me) az(m¢) ag(mt)

( T =3 ( =8
_ [ oa(w) |\ 198 [ aa(w) 2 as(p) 9
Aq = (a1(mt)) (thz(mt)) (as(mU)

3 -3
_(ealw) V22 [ an(w) | 2
Ae = (Oq(mt,)) (Otz(mt))

Gy

—2 4
_ (aa(Ms) \ 4T (a3(Ms)\7
Gu(u) = (m(mt)) (as(mn)
43
(M5) \ T (as(Mg))7
_ (Mg a3 (Mg
Ga(p) = (a1(mt>) gas(mt)>

_ [ e1(Msg) aig ()
Ge(p) = (ai(MT)) (altf\ﬁ;s)>
1 3

_ ( a1(n) )ﬁ ( az () )g
o (me) ag(my)

xexp (=3T1(u) +3To(n) + I (1))

-9
% ( a1 (p) )W ( as(p) )T ( as(n) )
a1 (Ms) O42(Ms)4 ag(Ms)

©loo

©loo

% ( a1 (1) )792 ( s () ) ( a3 (1) )
a1 (Ms) Déz(Ms)7 az(Msg)
5

( o (1) )T
az(Ms)
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Comparing with (5.1), our formulas in the SM summarised
in Table 1 and given in (3.10)—(3.14) contain the additional
contributions of relevant Yukawa couplings of the third
generation. Whereas the formulas in (5.1) contain the un-
known high-scale masses m;(0) (i = e, u, 7,u,c¢,t,d,s,b),
our formulas and the VEV v(0) formulas contain the VEV
and experimentally measurable masses at low energies
through the QCD-QED rescaling factors as given in (3.15).

While unravelling the RG fixed point behaviour of top
quark Yukawa coupling in the SM, Pendleton and Ross
[23] did include the scale dependence in the VEV of the

SM Higgs scalar to derive the following formulas for the
running masses of the up and down quark masses using
the variable ¢ = (1/2)In (¢?/p) and the dominance of
the QCD gauge and top quark Yukawa couplings over all
other couplings:

(5.2)

E
=
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92 (¢) as(t) \ 7 el
x |14 2 < 3 > 1 ,
87ra3(t0) Oz;g(to)
;7 - d7 87 b’ (5.3)
where
Yi
)\tD ~ ( — 2) . (54)
Yi

In contrast to (5.2)—(5.3) our formulas do not contain
unknown high-scale parameters, but our predictions at
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higher scales are made in terms of experimentally mea-
sured parameters as inputs. In addition, our analytic for-
mulas represent the one-loop radiative corrections due to
all gauge couplings of the SM and all the third generation
Yukawa couplings. Besides, we have also obtained new for-
mulas for all quarks and charged leptons.

Using the MS scheme in the SM, Balzeleit et al [20]
have utilised the effect of the scale dependent VEV and the
dominance of QCD gauge and top quark Yukawa couplings
to obtain the following analytic formulas for the running
masses of quarks at higher scales in terms of those at lower
scales (o = 1GeV),

ml(lu’) - ml(MO)G3(N)7 i =u,d,c,s,
m2 0
mw=mmw@+%£@%%w
1} Gs(p),
9mt (1o0)

k) mmw[ 2ty o) o)

() ) "

%w:<%m0?

CY3(M0)

As can be verified from (3.10) and Table1, our for-
mulas in the corresponding cases contain additional con-
tributions due to SU(2) x U(1) gauge couplings and all
third generation Yukawa couplings. Further, we have new
formulas for charged lepton masses.

As noted in Sects.2 and 3, the RGEs for the scale
dependent VEVs in the SM and MSSM along with those
for other couplings have been obtained by Arason et al.
[16-18] but no analytic formulas have been derived by
them.

Using a top-down approach, the third generation ef-
fects on fermion mass predictions have been examined
earlier in MSSM [29], where the scale dependence of the
VEVs and the corresponding RGEs have been ignored. In
the bottom-up approach, using the same renormalisation
scheme, analytic formulas have been explicitly specified
in [31] also ignoring the scale dependence of the VEVs. In
Tables 1-3 we compare our analytic formulas with those
of [31] in SM, 2HDM and MSSM. Whereas the top quark
Yukawa coupling integral defined through (3.12) has been
predicted to affect the running of m, (u) and m.(u) [29,
31], our formulas predict no such effect. Similarly, whereas
the b quark and the 7 lepton Yukawa coupling integrals
have been predicted to affect the running charged lep-
ton masses m.(p) and m,, (1) [29,31], our formulas predict
no such contributions. In particular, our formulas predict
that in all the three effective gauge theories, SM, 2HDM,
or MSSM, the third generation Yukawa couplings do not
affect the running masses of the first two generations in the
small mixing limit and at one-loop level. This is in clear
contrast to the results of [29,31] where the influence of

(5.5)
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the third generation effects have been emphasised on the
running masses of the first two generations. Another im-
portant and new feature of our formulas is that even for
the running masses of the third generation, the Yukawa
coupling integrals occur in the exponents with different
coefficients when compared with earlier analytic formulas
[29,31].

The dependence on the gauge couplings can also be
noted to be quite different in our analytic formulas.
Whereas earlier derivations [29,31] predicted the occur-
rence of the exponents C/2b;, C2/2b;, and C¢/2b; on the
R.H.S. of (3.11), our formulas predict the corresponding
exponents to be C;/2b;, C}/2b;, and C’;//2bi, respectively.
This has led to the gauge coupling factors, B,, By, and
B., to be different from the corresponding factors A,
A4, and A, in the earlier formulas [29,31] as shown in
Tables 1-3 for each gauge theory. Thus our formulas at
one-loop level predict a substantially new functional de-
pendence on gauge and Yukawa couplings for the running
masses in SM, 2HDM, and MSSM when compared with
those obtained by ignoring scale dependent VEVs [29, 31].

When scale dependence in the corresponding VEVs
is ignored, there are no RGEs for v,(u) and vg(u), in
2HDM nor in MSSM. This assumption gives tan G(u) =
tan G(m;) for all higher scales p > m; [29,31]. But inclu-
sion of the scale dependence of the VEVs through their
RGEs in (2.6) naturally leads to the new analytic formula
for tan G(p) given in (3.14) and (4.11) and is explained
through comparison in Tables 2-3.

Also our formulas for the case of MSSM are the same
as those obtained in [14] when the SUSY scale is assumed
to be Mg = my. But for any SUSY scale Mg > my, our
formulas given in (4.1)—(4.11) are new and have been de-
rived for the first time. In the limit Mg = m,, the formulas
(4.1)—(4.11) reduce to those in (3.10) and [14].

In the next section, while making numerical predic-
tions of the running masses at higher scales at the two-
loop level in SM and MSSM and at one-loop level in 2HDM
we have made comparative studies with earlier numerical
estimations wherever they exist.

6 Numerical predictions at higher scales

The analytic formulas given in the previous section pre-
dict masses and CKM matrix elements up to the one-loop
level at higher scales. We have also numerically estimated
the effect of scale dependent VEVs on predictions of the
running masses at two-loop level. We solve the RGEs for
the Yukawa matrices and VEVs including two-loop con-
tributions in SM and MSSM [16-19,26-28] numerically
and obtain the mass matrices at higher scales from the
corresponding products of the two. For this purpose, the
elements of the CKM matrix at higher scales have been ob-
tained by running them through the one-loop RGEs given
by (3.8) with appropriate values of the coefficient ¢ given
n (2.10)—(2.12) [29,30]. In 2HDM we carry out all numer-
ical estimations at one-loop level. We use the following
inputs for the running masses (m;), SM gauge couplings
(a1, a9, as), electromagnetic fine structure constant («),
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Fig. 1. Variation of running VEVs in the SM, 2HDM and

MSSM as a function of p(t = In i) showing a substantial devi-
ation from the scale independence assumption

electroweak mixing angle and the CKM matrix (V) at
= Mz which have been obtained from the experimental
data [26,29,31,33]:

my = 2.337512 MeV,  m, = 677135 MeV,
my = 181+ 13GeV, my = 4.6975:58 MeV,
ms = 93.41135 MeV,  my = 3.00 £0.11 GeV,

me = 0.48684727 £ 0.00000014 MeV,
m,, = 102.75138 £ 0.00033 MeV,

m, = 1.746697 000052 GeV. (6.1)
a1(Myz) = 0.016829 + 0.000017,
az(Mz) = 0.0334930:000035,
as(Mz) = 0.118 + 0.003,
gt = 128.896 + 0.09,
sin? Gy = 0.23165 % 0.000024. (6.2)
Also, we have
V(Mgz) =
0.9757 0.2205 0.0030e ™"
—0.2203 — 0.0001e® 0.9747 0.0373
0.0082 — 0.0029¢°  —0.0364 — 0.0007¢® 0.9993
(6.3)
For the sake of convenience we have used 6 = /2 as

in [33]. The choice of the same input quantities enables
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Fig. 2. Variation of running VEVs at higher scales in MSSM
and 2HDM as a function of u(t = In i) showing a substantial
deviation from the scale independence assumption

us to compare our results on mass predictions with those
obtained with the scale independence assumption on the
VEVs in SM and MSSM [33]. We neglect mixings among
charged leptons and use the diagonal basis for up quarks.

The variations of the VEVs as a function of p are
shown in Figs.1 and 2 for the SM, 2HDM, and MSSM
where the initial value of tan 3(Mz) = 10 has been used
for the latter two cases. In these and certain other fig-
ures we have used the variable ¢ = In p along the X-axis
where p is in units of GeV. It is quite clear that in the SM
as well as the other cases the running effects of the VEVs
contribute to very significant departures from the assumed
scale independent values [29,31-33]. Thus, the predicted
running masses are to be different in all three cases. Since
vy (1) decreases and vy () increases with increasing p, the
up quark masses are expected to have decreasing effects,
whereas the down quark and charged lepton masses are ex-
pected to have increasing effects at higher scales in MSSM
and 2HDM. But in the SM all the masses are expected to
have decreasing effects due to the decreasing value of v(p).
In fact, these features are clearly exhibited in all numerical
values of the mass predictions carried out in this investi-
gation. It is to be noted that almost all fermion masses,
except the top quark, the b quark and the 7 lepton near
the perturbative limits, decrease at higher scales due to
the decrease in the corresponding Yukawa couplings. But
the effect of running VEVs contribute to additional de-
creasing or increasing factors in the respective cases.

The predictions of all the charged fermion masses as
a function of ¢ = In y are shown in Fig. 3 with Mg = Mz
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at higher scales
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Fig. 3. Predictions of running masses at higher scales as
a function of pu (¢ = Inu) in MSSM with SUSY scale
Ms = Mz using the input parameters given in (6.1)—(6.3) and
tan B(Ms) = 10. The dashed lines are due to uncertainties in
the input parameters

Fig. 4. Same as Fig. 3 but with Mg = 1TeV
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Fig. 5. Predictions of running masses at higher scales in the Fig. 6. Predictions of running masses at higher scales in SM
2HDM using the input parameters given in (6.1)~(6.3) and with the input parameters given in (6.1)-(6.3) and My =
tan B(Mz) = 10 250 GeV
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Fig. 7. Comparison of running mass predictions in the MSSM
(solid lines) with those obtained from scale independence as-
sumptions (dashed lines) on the VEVs. The SUSY scale has
been taken to be Mz

and in Fig.4 with Mg = 1TeV in the case of MSSM using
tan B(Myz) = 10. The corresponding predictions in 2HDM
and SM are shown in Figs.5 and 6. Our numerical esti-
mations agree very closely with the corresponding mass
predictions at high scales in 2HDM by Cvetic et al. [21]
for mg(p), mp(p), me(p) and my (). But in 2HDM too we
have additional numerical estimations, both in the quark
and in the lepton sector. In Fig. 7 we display the compar-
ison of the mass predictions as functions of ¢ = ln u with
and without running VEVs in MSSM assuming Mg = My
and tan S = 10. Although the differences in the two types
of predictions are clearly distinguishable, they are quite
prominent in the up quark sectors. While the new contri-
butions are seen to be significant for the down quarks and
charged leptons at higher scales with p > 107 GeV, in the
case of up quarks the contributions are found to be impor-
tant starting from p = O (TeV). As compared to the scale
independence assumption [33], our predictions are clearly
smaller for the up quarks and larger for the down quarks
and charged leptons as indicated by solid-line curves in
Fig. 7. With the input values for m; and m,; in (6.1), the
lowest allowed value of tan 3(Ms) is determined by ob-
serving the perturbative limit for the top quark Yukawa
coupling at the GUT scale, y?(Mgut)/4m < 1.0 and the
highest allowed value of tan G(Ms) is determined from the
corresponding limit on the b quark Yukawa coupling.

MSSM

Ms = Mz :2.3738 < tan B(Ms) < 58.7135, (6.4)
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quark (b quark) Yukawa coupling. The dashed lines are due to
uncertainties in the respective input masses

Mg = 1TeV : 1.775% < tan 3(Ms) < 64.835. (6.5)

The allowed region for tan 5(Mg) as a function of Ms in
MSSM is shown in Fig.8 where the solid (dashed) lines
are due to the central values (uncertainties) in the in-
puts of m; and my. It is clear that the allowed region
for tan 3 increases, although slowly, with increasing Msg.
In the 2HDM the allowed region for tan § is found to be
substantially larger.

2HDM
1.270-3 < tan B(My) < 68.9 + 2.7. (6.6)

We have noted that in all three effective theories, the
difference between the one- and two-loop estimates of the
running masses at the highest scale (My) varies between
1-5%, the lowest discrepancy being for the leptons and
the highest being for the top quark. But in MSSM and
2HDM this discrepancy increases to 10-12% for the b and
the top quarks as the respective perturbative limits are
approached.

The running VEVs in MSSM and 2HDM lead to a
variation of tan () as a function of p over its initial
value at M. This is shown in Fig.9 for different input
values where the dashed (solid) line represents the case
for 2HDM (MSSM). In both theories tan 5(x) decreases
(increases) from its initial value when the latter crosses a
critical point. This critical value is tan B(Mz) ~ 56 (52) in
MSSM (2HDM). In Fig. 10 we present tan 8(My) at the
GUT scale as a function of tan 3(Myz) for both theories.
We observe a steep rise in the curves as the respective
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Fig. 14. Prediction of top quark mass m:(u) at higher scales
(u > Mz) as a function of u (¢ = In ) and tan 8(u) in MSSM
with Mg = 1 TeV. The values of tan 3(u) at very u has been
obtained through solutions of the corresponding RGE using
tan B(Mz) = 2-58 as inputs

perturbative limits are approached in the large tan G(Mz)
region.

Using the central values of my(Mz), my(Mz) and
m;(Mz) from (6.1), we have studied the variation of
me(p), mp(p) and m,(p) for the different values of p =
10° GeV, 10 GeV and 2 x 106 GeV, each as a function
of various low-energy input values of tan 3(Myz) in MSSM
and 2HDM. These results are presented in Figs. 11-13 for
the 2HDM (dashed lines) and for the MSSM (solid lines)
with Mg = M. It is clear that the perturbatively allowed
range of tan 3 decreases with increasing p both for MSSM
and 2HDM.
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Fig. 15. Variation of top quark mass prediction at the GUT
scale as a function of the SUSY scale Mg = Mz — 10* GeV and
various values of tan 3(Ms)=3 (solid line), 10 (large-dashed
line), 50 (small-dashed line), 55 (dotted line)
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Fig. 16. Same as Fig. 15 but for b quark and 7 lepton mass
predictions. The input values of tan (Msg) for four different
curves in each case are tan 8(Ms) = 3, 10, 50, and 55 in the
increasing order of masses
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Table 4. Running mass and VEV predictions at higher scales in the non-
SUSY standard model for the input values of the Higgs mass My = 250 GeV
and other parameters given in (6.1)—(6.3)

n= 109 (GeV)

n= 1013 (GeV)

pn=2x10' (GeV)

A/\"\’\E
@
=

E

.2237
1.1537+0:2233

335.2184+31:8201

99.13597 10,7438
2.355810 621
469155165228
1.36397:9328
0.46651:990!
98.464819:0049
1.673870:0004

157.52067 73812

0947201849
275.2419125:3286
83.9249+10,2622
1.952970:5433
38.892915-4652
1.097110:0148
0.453310:0001
95.6834+0:0078
1.626570:9005

155.7062 ;6592

0.835119:1636
242.6476123:5536
75.4348 19,2647
17372104846
34.5971+4:8857
0.9574+9:0037
0.441310:0001
93.1431+0:013¢
1.5834+0-0001
155.61967 139330

Table 5. Predictions of running masses, VEVs and tan (3 at higher scales p =
10° GeV, 10*® GeV and 2 x 10'° GeV in MSSM with SUSY scale Ms = 1 TeV, using
two-loop RG equations

tan B(Ms) = 10

pw=10° (GeV)

p=10" (GeV)

w=2x 1016 (GeV)

$33F

g

1.161870:2226
339.4064 7812929
112.3144+17:9892

2.3842106582

47.4812+0:5843

1.592010:1038

0.4290+9:0001

90.5439+0:0169

1.542979:0006

8231470504
141776579739

17.223774:1372

0.888270-1694

258.0045+23-8287

94.3698122:5577
1.829079:5111

36.4261+5-1358
12637191189

0.391110:0002

82,5539 100346
1.4085+3:9909

7.435079:97%2

130.54557 150431

17.558179:1428

0.7238+0-1365
210.3273+19-0036
82.4333+30-2676
15036104235
29.945414-3001
1.063619 141
0.358570-0008
75.671510:0578
1.2922+9:0013
6.92807 43458
123.8177; 278954
17.871870 1492

p=10" (GeV)

n= 2 X 1016 (Gev)

=
@
3

11687192225
339.5917+31:262L
118.6588+19-9035

23774706342

47.3523+6:5303
1.8297+01667

0.427679:0003

90.2779;9:00%
1.6867+3:9936
53.6122; 23044
141.209571%,5285
2.633970:08%9

0.8889 101675

258.2929123-329
104.23631327015

1.821919:3054
36.289113-9777
15768752640
0.3893700003
82.20647 51924
1.657475:9188
52.7633 53397
127.47427 225973
2.415970'1506

07244701219
210.5049113-1077
95.1486 1592836
1.49673 Q4107
29.8135+41795
14167194303
0.356575 0002
75.2038 0 212
16292100443
52.07387 %747
117.79477 157214
2.26207 254
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Table 6. Predictions of running masses, VEVs and tan 8 in 2HDM at higher

scales using one-loop RG equations

tan B(Ms) = 10

pu=10° (GeV)

pu=10" (GeV)

u=2x 10 (GeV)

My (MeV) 1.202119 3307
me (MeV) — 349.2805732:0524
m; (GeV)  103.5011+113400
ma (MeV) 2454740 578
ma (MeV) 48.885215 7314
my (GeV) 162811—8:82})2
me (MeV) 0.46620 0001
my, (MeV) 98.41320:00%!
my (GeV) 1.675270:0004
tan 3 8.19567 3594
vy (GeV) 155.6481 7 3029
va (GeV) 189914366005

0.990819:300%
287.89751 503500
88.2332131:1753
2.043079 56059
40.68601 5 057
1.370910 0352
0.452970-0001
95.59701 00958
16283150004
67570 e
152.8315 9 5005
19,9110 6817

0.8749+31791
254.2131 1248398
79.63731 511974
1.820410:305
36.254413:0790
1.230970:0826
0.4407+:0991
93.019719:0122
1.585179:0005
7.354370:897
151.95517 145219
20662070917

tan B(Ms) = 55

pw=10° (GeV)

u=10" (GeV)

u=2x 10" (GeV)

0990891919
287.9066+ 273646
92.1000712:664
2.043079:5559
40.6898+ 36622
1.539279-1272
0.45297+9-0001
95.6235+0:0097
17775799978
55.70947 34787
15208467 123141

0.874979:1791
954.2223124-3441
83.9317+13-2279
1.820410-30%0
36.258413:9720
1.412810:1353
0.4407;9,0001
93.053619:9146
1.7851%5:0136
56.58317 22730
150.44787 151914

m. (MeV) 1.202170:3309
me (MeV) 349.2889f§i‘.§?§3
me (GeV)  106.6700%122719
ma (MeV) 2454710 5748
ma (MeV) 48.8888 157300
my (GeV) 17719701503
me (MeV) 0.46627 0001
m, (MeV) 98.4302*00024
m, (GeV) 17659700038
tan 3 54.99637 1 735
v, (GeV) 155.71787¢ 5565
va (GeV) 2.831470:049

2.72997 0 0995 2.6588 0 1101

We have examined the simultaneous variation of 7 (1)
as a function of p and tan B(p) which is displayed in
the three dimensional plot of Fig. 14 for the input value
of m¢(Mz) = 181GeV and tan 8(Mg) = 2-58, where
Mg = 1TeV. Using the top quark mass at u = Mz, we
have calculated m;(u) and tanG(u) at every p between
Mg — My for the input value of tan B(Mg) = 2-59. The
results are displayed in the three dimensional plot. The
variations of the running mass predictions at the GUT
scale (My = 2 x 1016 GeV) as a function of the SUSY
scale (Mg = Mz — 10* GeV) are shown in Figs. 15 and 16
for the third generation fermions using various input val-
ues of tan 3(Ms). We find that the top quark mass at the
GUT scale at first decreases sharply in the smaller and
larger tan (8 regions as Mg increases and then remains al-
most constant for Mg = 3 x 10%>-10* GeV. Similarly the
predicted b and 7 masses decrease with increasing Mg al-
though the fall-off is slower in the case of 7 in the large
tan 3 region.

Numerical values of predictions of the running masses
are presented in Table4 for the SM at the three differ-
ent scales = 10° GeV, 10* GeV and 2 x 1016 GeV. The

two-loop contributions to the RG evolution of the Yukawa
couplings depends, although very weakly, upon the Higgs
quartic couplings A\, which is related to the Higgs mass
(My) and VEV (v), A\ = MZ/(4v?). We have used the
two-loop RGEs for A(u) for the SM [17] and evaluated
the running masses and VEVs of Table4 for the input
value of the Higgs mass My = 250 GeV. Changing the
Higgs mass in the allowed range of My = 220-260 GeV
[33] does not change the results of Table4 significantly.
The uncertainties in the quantities are due to those in the
running masses at 4 = M. The mass matrices for M ()
and M, (u) are modified by the factors v(u)/v(Myz) where
v(Mz) ~ 174 GeV and the CKM matrices at higher scales
remain the same as in [33]. The computed values of masses
are found to be less when compared to those obtained with
the scale independence assumption [33]. This is clearly un-
derstood as the running VEV in the SM decreases with
increasing u. For example, in the SM at p = 2 x 1016 GeV
our predictions are (m,,, me, m;) = (0.83MeV, 242.6 MeV,
75.4 GeV) as compared to [33] (my, m., m¢) = (0.94 MeV,
272MeV, 84 GeV) where the running effect on the VEV
has been ignored. In Tablesb and 6 numerical values of
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masses, VEVs and tan 3 are given at the same three scales
for the MSSM and 2HDM with tan 5(Mz) = 10 and 55 in
each of the two theories. As emphasised in this paper our
high-scale estimations predict quite significantly different
values for the running masses, especially in the up quark
sector. Although the CKM matrices at high scales remain
the same as under scale independence assumptions on the
VEVs, the up quark mass matrices are modified by the fac-
tor vy, (@) /vy (Ms), but the down quark and charged lepton
mass matrices are modified by the factor vg(u)/vqa(Ms). In
the MSSM with Mg = Mz and tan 3(Mz) = 10, includ-
ing the running effect of the VEVs, the GUT scale predic-
tions are (my, me,my) = (0.70 MeV, 200 MeV, 73.5GeV)
as compared to [33] (M., me, m:) = (1.04 MeV, 302 MeV,
129 GeV). But by increasing the SUSY scale to Mg =
1TeV and in the large tan 8 region, we find a substantial
decrease in the predicted values of the top quark mass
at the GUT scale, leading to (m,,m.,m;) = (0.72MeV,
210MeV, 95.1 GeV). This is understood by noting that
tan 3 =~ 55 is closer to the perturbative limit for which
the top quark Yukawa coupling is larger. Similarly from
Table 5 we note a nearly 20% increase in the m;, (M) with
the increase of tan 3 from 10-55. Similar effects are also
noted in 2HDM as can be seen from Table 6, where m;
decreases by nearly 7% as tan 3 increases from 10-55. For
a larger effect the increase has to be larger in tan § since
the perturbative limit in this case is closer to tan 8 = 69
as compared to the MSSM case, where the limiting value
is tan 8 = 59.

7 Summary and conclusion

In the frequently exploited renormalisation scheme in
gauge theories, the Yukawa couplings and VEVs in the
SM, 2HDM and MSSM run separately [16-31,33]. The ef-
fect of scale dependence of the VEVs has been ignored
while deriving analytic formulas [29,31] and obtaining nu-
merical predictions at higher scales for the running masses
of fermions [33], but it has been considered in [16-25] and
it has more appropriately been taken into account more
recently [14] for MSSM. In this paper, we have derived
new analytic formulas in the SM and 2HDM and gener-
alised the formulas of [14] for any supersymmetry scale
(Ms > Mz). The analytic formulas are given in (3.10)—
(3.14), summarised explicitly and compared with formulas
derived by other authors in Tables 1-3. The new formulas
exhibit a substantially different functional dependence on
gauge and Yukawa couplings in all the three effective theo-
ries. In particular, the running masses of the first two gen-
erations are found to be independent of the Yukawa cou-
plings of the third generations in the small mixing limit.
Numerical predictions at two-loop level show that all the
running masses in the SM and only the up quark masses
in the MSSM and 2HDM decrease at high scales when
compared with the predictions taking scale independent
VEVs. But in the case of MSSM and 2HDM, the down
quark and the charged lepton masses increase over the cor-
responding predictions obtained with scale independent
assumptions on the VEVs. Compared to the MSSM the
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perturbatively allowed region of tan § is larger in 2HDM.
In MSSM the allowed region shows a slow increase with
the SUSY scale. We have also made predictions of the
running masses at the GUT scale as a function of super-
symmetry scale, exhibiting new behaviours. We suggest
that these new analytic formulas and improved estimates
on the running masses and tan 0 at high scales be used
as inputs to test models proposing unified explanations of
the quark and lepton masses.
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